Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A coelenterazine-based luminescence assay to quantify high-molecular-weight superoxide anion scavenger activities


In all living cells, levels of reactive oxygen species are kept in check by antioxidative activities. Superoxide radicals are dismutated by superoxide dismutases, by other enzymes and by nonenzymatic compounds. This protocol describes the quantification of superoxide scavenging activities (SOSA). It is based on the inhibition of chemiluminescence emitted by coelenterazine when oxidized by superoxide. SOSA is a summary parameter comprising all high-molecular-weight superoxide scavengers in a biological sample. Enzymes and nonenzymatic scavengers can also be distinguished. The SOSA assay is quick, reproducible and applicable to fields as diverse as medical diagnostics, food sciences, or agriculture. The protocol presented here requires about 2 working days to complete.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: XOD reaction and CTZ luminescence.
Figure 2: SOSA assay procedure and data evaluation.
Figure 3: SOSA calibration curve.
Figure 4: Superoxide scavenging activities in biological samples.
Figure 5: Changes in SOSA in 5-d-old Lepidium after abiotic stress treatment.
Figure 6: SOSA increases in culture medium of HepG2 cells.


  1. 1

    Chen, S. et al. Penicillin-enhanced chemiluminescence of the luminol-H2O2-Co2+ system. J. Pharm. Sci. 80, 1017–1019 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Elstner, E.F. (ed). Der Sauerstoff—Biochemie, Biologie, Medizin (BI-Wissenschaftsverlag, Mannheim, Germany, 1990).

  3. 3

    Alscher, R.G., Erturk, N. & Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331–1341 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Bowler, C., Van Montagu, M. & Inze, D. Superoxide dismutase and stress tolerance. Annu. Rev. Plant. Biol. 43, 83–116 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Scandalios, J.G. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Hagermann, A.E. et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46, 1887–1892 (1998).

    Article  Google Scholar 

  7. 7

    Kuda, T., Hishi, T. & Maekawa, S. Antioxidant properties of dried product of 'haba-nori', an edible brown alga, Petalonia binghamiae (J. Agaradh) Vinogradova. Food Chem. 98, 545–550 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Saleh, L. & Plieth, C. Total low-molecular-weight antioxidants as a summary parameter, quantified in biological samples by a chemiluminescence inhibition assay. Nat. Protoc., advance online publication, 16 September 2010, doi:10.1038/nprot.2010.120.

  9. 9

    Lissi, E., Pascual, C. & del Castillo, M.D. On the use of quenching of luminol luminescence to evaluate SOD activity. Free Radic. Biol. Med. 16, 833–837 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Pascual, C., Castillo, M.D.d. & Romay, C. A new luminol sensitized chemiluminescence method for determination of superoxide dismutase. Anal. Lett. 25, 837–849 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Liochev, S.I. & Fridovich, I. Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch. Biochem. Biophys. 337, 115–120 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Roberts, P.A., Knight, J. & Campbell, A.K. Pholasin-A bioluminescent indicator for detecting activation of single neutrophils. Anal. Biochem. 160, 139–148 (1987).

    CAS  Article  Google Scholar 

  13. 13

    Molecular Probes, Inc. Coelenterazine and coelenterazine derivatives. Product Information <> (2001).

  14. 14

    Teranishi, K. & Shimomura, O. Coelenterazine analogs as chemiluminescent probe for superoxide anion. Anal. Biochem. 249, 37–43 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Kervinen, M., Pätsi, J., Finel, M. & Hassinen, I.E. Lucigenin and coelenterazine as superoxide probes in mitochondrial and bacterial membranes. Anal. Biochem. 324, 45–51 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Miller, E.K. & Fridovich, I. A demonstration that O2− is a crucial intermediate in the high quantum yield luminescence of luminol. J. Free Radic. Biol. Med. 2, 107–110 (1986).

    CAS  Article  Google Scholar 

  17. 17

    Tarpey, M.M. et al. Chemiluminescent detection of oxidants in vascular tissue: lucigenin but not coelenterazine enhances superoxide formation. Circ. Res. 84, 1203–1211 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Vásquez-Vivar, J. et al. Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Lett. 403, 127–130 (1997).

    Article  Google Scholar 

  19. 19

    Wardman, P. et al. Pitfalls in the use of common luminescent probes for oxidative and nitrosative stress. J. Fluoresc. 12, 65–68 (2002).

    Article  Google Scholar 

  20. 20

    Rees, J.F. et al. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221 (1998).

    CAS  PubMed  Google Scholar 

  21. 21

    de Wergifosse, B. et al. Coelenterazine: a two-stage antioxidant in lipid micelles. Free Radic. Biol. Med. 36, 278–287 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Fridovich, I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245, 4053–4057 (1970).

    CAS  PubMed  Google Scholar 

  23. 23

    Hille, R. Structure and function of xanthine oxidoreductase. Eur. J. Inorg. Chem. 2006, 1913–1926 (2006).

    Article  Google Scholar 

  24. 24

    Vorbach, C., Harrison, R. & Capecchi, M.R. Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol. 24, 512–517 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Camejo, D. et al. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus. Physiol. Plant. 131, 367–377 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Saleh, L. & Plieth, C. Fingerprinting antioxidative activities in plants. Plant Methods 5, 2 (2009).

    Article  Google Scholar 

  27. 27

    Ziobro, A. & Bartosz, G. A comparison of the total antioxidant capacity of some human body fluids. Cell Mol. Biol. Lett. 8, 415–419 (2003).

    PubMed  Google Scholar 

  28. 28

    Wippich, N. et al. Comparison between xanthine oxidases from buttermilk and microorganisms regarding their ability to generate reactive oxygen species. Int. J. Mol. Med. 7, 211–216 (2001).

    CAS  PubMed  Google Scholar 

  29. 29

    Plieth, C. Aequorin as a reporter gene. in Arabidopsis Protocols Vol. 323 (eds. Salinas, J. & Sanchez-Serrano, J.J.) (Humana Press, Totowa, New Jersey, 2006).

  30. 30

    de Lamirande, G., Allard, C. & Cantero, A. Purine-metabolizing enzymes in normal rat liver and Novikoff hepatoma. Cancer Res. 18, 952–958 (1958).

    CAS  PubMed  Google Scholar 

Download references


We thank L. Shaw (Kiel) for critically reading the paper. We also thank S. Vollbehr, G. Weppner and S. Anderson for technical assistance; J. Scheller (Institute for Biochemistry, University of Kiel) for providing HepG2 cells; B. Bryan of Prolume for the generous gift of coelenterazine; and A. Scheidig (Structural Biology Group, Kiel) and U.-P. Hansen (Biophysics Group, Kiel) for their generous support. We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (Grant no. PL253/5), as well as access to the core facilities of the Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Kiel.

Author information




L.S. carried out the experiments reported in the main paper, performed data processing and participated in amending the draft. C.P. conceived of the protocol, carried out the experiments shown in the supplementary information and wrote the paper. Both authors approved the final version.

Corresponding author

Correspondence to Christoph Plieth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Coelenterazine analogues, their generic names, synonyms, and commercial sources. (PDF 10 kb)

Supplementary Note 1

Acetaldehyde is a less favourable substrate for xanthine oxidase in the SOSA assay. Anaerobic organisms may contain superoxide reductase instead of SOD. (PDF 12 kb)

Supplementary Note 2

The signal to background ratio of coelenterazine luminescence produced by different CTZ analogues. (PDF 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saleh, L., Plieth, C. A coelenterazine-based luminescence assay to quantify high-molecular-weight superoxide anion scavenger activities. Nat Protoc 5, 1635–1641 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing