Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Purification of recombinant high molecular weight two-partner secretion proteins from Escherichia coli

Abstract

This protocol describes the purification of a recombinant high molecular weight (HMW) two-partner secretion exoprotein (generically referred to as TpsA proteins) from Escherichia coli using methods developed recently to obtain highly purified flagellin-free recombinant EtpA (rEtpA) glycoprotein. The protocol addresses problems frequently encountered with the expression of these HMW proteins, namely plasmid instability and protein degradation, as well as a recently recognized issue of flagellin contamination. Briefly, the TpsA protein of interest is expressed with its outer membrane transporter (TpsB) protein in a flagellin-minus recombinant E. coli background. Culture supernatants are collected, concentrated through high molecular weight cutoff filters, followed by purification by size exclusion column chromatography. Details are included for the expression of HMW TpsA glycoproteins as polyhistidine-tagged molecules, which can be further purified by metal affinity chromatography (MAC). Using this protocol, it is possible to obtain highly purified microgram–milligram quantities of the TpsA protein of interest within 2–3 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-partner secretion (TPS) operons.
Figure 2: General outline for purification of two-partner secretion of exoprotein (TpsA proteins).
Figure 3: Recombinant plasmids for the co-expression of Tps genes in Escherichia coli.
Figure 4: Pilot expression of TpsA exoprotein.
Figure 5: Purification of two-partner secretion (TPS) exoprotein by size-exclusion (gel filtration) or affinity chromatography.
Figure 6: Purified recombinant two-partner secretion exoprotein (TpsA proteins) retain functional activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jacob-Dubuisson, F., Locht, C. & Antoine, R. Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol. Microbiol. 40, 306–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ward, J.I. et al. Efficacy of an acellular pertussis vaccine among adolescents and adults. N. Engl. J. Med. 353, 1555–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Greco, D. et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N. Engl. J. Med. 334, 341–348 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Roy, K. et al. Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457, 594–598 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Roy, K., Hamilton, D., Allen, K.P., Randolph, M.P. & Fleckenstein, J.M. The EtpA exoprotein of enterotoxigenic Escherichia coli promotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infect. Immun. 76, 2106–2112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. St Geme III, J.W. & Grass, S. Secretion of the Haemophilus influenzae HMW1 and HMW2 adhesins involves a periplasmic intermediate and requires the HMWB and HMWC proteins. Mol. Microbiol. 27, 617–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Fleckenstein, J.M., Roy, K., Fischer, J.F. & Burkitt, M. Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli. Infect. Immun. 74, 2245–2258 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buscher, A.Z., Grass, S., Heuser, J., Roth, R. & St Geme, J.W. Surface anchoring of a bacterial adhesin secreted by the two-partner secretion pathway. Mol. Microbiol. 61, 470–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mazar, J. & Cotter, P.A. New insight into the molecular mechanisms of two-partner secretion. Trends Microbiol. 15, 508–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Grass, S. et al. The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol. Microbiol. 48, 737–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Szymanski, C.M. & Wren, B.W. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Clantin, B. et al. The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway. Proc. Natl. Acad. Sci. USA 101, 6194–6199 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bailey, L., Agger, S., Peterson, L., Thompson, J. & Weaver, T. Crystallization of truncated hemolysin A from Proteus mirabilis. Acta Crystallographica Section F 61, 448–450 (2005).

    Article  CAS  Google Scholar 

  14. Bradley, P., Cowen, L., Menke, M., King, J. & Berger, B. BETAWRAP: successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proc. Natl. Acad. Sci. USA 98, 14819–14824 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Hodak, H. & Jacob-Dubuisson, F. Current challenges in autotransport and two-partner protein secretion pathways. Res. Microbiol. 158, 631–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Renn, J.P. & Clark, P.L. A conserved stable core structure in the passenger domain beta-helix of autotransporter virulence proteins. Biopolymers 89, 420–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Menozzi, F.D., Gantiez, C. & Locht, C. Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol. Lett. 62, 59–64 (1991).

    Article  Google Scholar 

  18. Hertle, R., Sussmuth, R., Braun, V. & Jung, G. Two-step fast protein liquid chromatographic purification of the Serratia marcescens hemolysin and peptide mapping with mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 737, 13–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Grass, S. & St Geme III, J.W. Maturation and secretion of the non-typable Haemophilus influenzae HMW1 adhesin: roles of the N-terminal and C-terminal domains. Mol. Microbiol. 36, 55–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Golemis, E. & Adams, P.D. Protein-Protein Interactions: A Molecular Cloning Manual 2nd edn. (Cold Spring Harbor Laboratory Press, New York, USA, 2005).

    Google Scholar 

  21. Nelson, K.M., Young, G.M. & Miller, V.L. Identification of a locus involved in systemic dissemination of Yersinia enterocolitica. Infect. Immun. 69, 6201–6208 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barenkamp, S.J. & St Geme III, J.W. Genes encoding high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae are part of gene clusters. Infect. Immun. 62, 3320–3328 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Snyder, L. & Champness, W. in Molecular Genetics of Bacteria (ed. Snyder, L.) Vol. 1 Ch. 4 176–177 (ASM Press, Washington DC, USA, 2003).

    Google Scholar 

  24. Kholod, N. & Mustelin, T. Novel vectors for co-expression of two proteins in E. coli. BioTechniques 31, 322–323 326–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Westermeier, R. Sensitive, quantitative, and fast modifications for Coomassie blue staining of polyacrylamide gels. Proteomics 6 (Suppl 2): 61–64 (2006).

    Article  PubMed  Google Scholar 

  28. Chang, A.C. & Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  30. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (National Center for Research Resources) RR16190-05, the Department of Veterans Affairs and funds from the University of Tennessee Microbial Pathogenesis Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M Fleckenstein.

Ethics declarations

Competing interests

The University of Tennessee Research corporation has filled for a patent on the use of EtpA and flagellin in the treatment/prevention of Gram-negative infections.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleckenstein, J., Roy, K. Purification of recombinant high molecular weight two-partner secretion proteins from Escherichia coli. Nat Protoc 4, 1083–1092 (2009). https://doi.org/10.1038/nprot.2009.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.87

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing