Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

On-wire lithography: synthesis, encoding and biological applications

Abstract

The next step in the maturing field of nanotechnology is to develop ways to introduce unusual architectural changes to simple building blocks. For nanowires, on-wire lithography (OWL) has emerged as a powerful way of synthesizing a segmented structure and subsequently introducing architectural changes through post-chemical treatment. In the OWL protocol presented here, multisegmented nanowires are grown and a support layer is deposited on one side of each nanostructure. After selective chemical etching of sacrificial segments, structures with gaps as small as 2 nm and disks as thin as 20 nm can be created. These nanostructures are highly tailorable and can be used in electrical transport, Raman enhancement and energy conversion. Such nanostructures can be functionalized with many types of adsorbates, enabling the use of OWL-generated structures as bioactive probes for diagnostic assays and molecular transport junctions. The process takes 13–36 h depending on the type of adsorbate used to functionalize the nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: On-wire lithography protocol.
Figure 2: Electrochemical set up.
Figure 3: Field-emission scanning electron microscope images of representative nanorods/nanodisk structures.
Figure 4: Confocal Raman micrographs of nanodisk SERS-active structures.

Similar content being viewed by others

References

  1. Hurst, S.J., Payne, E.K., Qin, L. & Mirkin, C.A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. Engl. 45, 2672–2692 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Ozin, G.A. & Arsenault, A.C. Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publishing, Cambridge, 2005).

    Google Scholar 

  3. Gates, B.D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lieber, C.M. & Wang, Z.L. Functional nanowires. MRS Bull. 32, 99–108 (2007).

    Article  CAS  Google Scholar 

  5. Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mat. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  6. Melosh, N.A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hu, J., Ouyang, M., Yang, P. & Lieber, C.M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48–51 (1999).

    Article  CAS  Google Scholar 

  8. Wu, Y., Fan, R. & Yang, P. Block-by-block growth of single-crystalline Si/Si-Ge superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    Article  CAS  Google Scholar 

  9. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C. & Lieber, C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Nicewarner-Pena, S.R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Martin, C.R. Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Piner, R.D., Zhu, J., Xu, F., Hong, S. & Mirkin, C.A. Dip-pen nanolithography. Science 283, 661–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Manna, L., Scher, E.C. & Alivisatos, A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  14. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, X. et al. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 7, 3214–3218 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sioss, J.A. & Keating, C.D. Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett. 5, 1779–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Qian, F., Gradecak, S., Li, Y., Wen, C.-Y. & Lieber, C.M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, J., Bando, Y., Zhan, J. & Golberg, D. Fabrication of silica-shielded Ga-ZnS metal-semiconductor nanowire heterojunctions. Adv. Mat. 17, 1964–1969 (2005).

    Article  CAS  Google Scholar 

  19. Liu, S., Tok Jeffrey, B.H. & Bao, Z. Nanowire lithography: fabricating controllable electrode gaps using Au–Ag–Au nanowires. Nano Lett. 5, 1071–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Qin, L., Park, S., Huang, L. & Mirkin, C.A. On-wire lithography. Science 309, 113–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Chou, S.Y., Krauss, P.R. & Renstrom, P.J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  22. Qin, L., Banholzer, M.J., Millstone, J.E. & Mirkin, C.A. Nanodisk codes. Nano Lett. 7, 3849–3853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, G., Qin, L. & Mirkin, C.A. Spectroscopically enhancing electrical nanotraps. Angew. Chem. Int. Ed. Engl. 47, 1938–1941 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wei, W. et al. Surface plasmon-mediated energy transfer in heterograp Au–Ag nanowires. Nano Lett. 8, 3446–3449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banholzer, M.J., Millstone, J.E., Qin, L. & Mirkin, C.A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Patolsky, F., Zheng, G. & Lieber, C.M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 1, 1711–1724 (2006).

    Article  CAS  Google Scholar 

  27. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U. & Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Nie, S., Xing, Y., Kim, G.J. & Simons, J.W. Nanotechnology applications in cancer. Ann. Rev. Biomed. Eng. 9, 257–288 (2007).

    Article  CAS  Google Scholar 

  29. Qin, L., Jang, J.-W., Huang, L. & Mirkin, C.A. Sub-5-nm gaps prepared by on-wire lithography: correlating gap size with electrical transport. Small 3, 86–90 (2006).

    Article  Google Scholar 

  30. Qin, L., Banholzer, M.J., Xu, H., Huang, L. & Mirkin, C.A. Rational design and synthesis of catalytically driven nanorotors. J. Am. Chem. Soc. 129, 14870–14871 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, X. et al. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics. J. Am. Chem. Soc. 130, 8166–8168 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Qin, L. et al. Designing, fabricating, and imaging Raman hot spots. Proc. Natl Acad. Sci. USA 103, 13300–13303 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Payne, E.K., Shuford, K.L., Park, S., Schatz, G.C. & Mirkin, C.A. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B 110, 2150–2154 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill, H.D. & Mirkin, C.A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 1, 324–336 (2006).

    Article  CAS  Google Scholar 

  36. Li, Z. & Mirkin, C.A. G-quartet-induced nanoparticle assembly. J. Am. Chem. Soc. 127, 11568–11569 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticle into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Goldstein, J. et al. Scanning Electron Microscopy and X-ray Microanalysis 3rd ed. (Springer Science & Business Media, Inc., New York, 2003).

    Book  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges the National Science Foundation (NSF), the NSSEFF and the AFSOR for support of this research. C.A.M. is also grateful for a NIH Director's Pioneer Award. M.J.B. acknowledges the 2008 Edward G. Weston ECS Summer Fellowship and NU for a Ryan Fellowship. J.E.M. acknowledges NU for a Presidential Fellowship. K.D.O. acknowledges the NSF for a Graduate Research Fellowship and NU for a Ryan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A Mirkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banholzer, M., Qin, L., Millstone, J. et al. On-wire lithography: synthesis, encoding and biological applications. Nat Protoc 4, 838–848 (2009). https://doi.org/10.1038/nprot.2009.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.52

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing