Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Optimization of immunoprecipitation–western blot analysis in detecting GW182-associated components of GW/P bodies

Abstract

Characterizing the components of GW/processing bodies is key to elucidating RNA interference and messenger RNA processing pathways. This protocol addresses challenges in isolating a low-abundance protein GW182 and GW body (GWB)-associated proteins by building on previous reports that used polyclonal sera containing autoantibodies to GW/P body components. This protocol uses commercially available monoclonal antibodies to GW182 that are covalently coupled to Protein A or G sepharose beads and then used to immunoprecipitate GW182 and associated proteins from cell extracts. Immunoprecipitates are separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes and probed by western blot with antibodies directed to proteins of interest. This protocol, which is expected to take 4–5 d, provides a biochemical approach for detecting GW182 and associated proteins in biological samples and thus facilitates the elucidation of the diverse functions of GWBs. It is expected that this protocol can be adapted to the detection of other RNA-binding complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the steps involved and the approximate time required in detecting GW182 and associated proteins that are components of GWBs.
Figure 2: Antibodies to GW182-immunoprecipitated Ago2, Dicer and XRN1 proteins from HeLa cell extracts as examined by WB analysis.
Figure 3: Example of successful covalent coupling of antibodies to sepharose beads.
Figure 4: Example of a Ponceau S-stained nitrocellulose membrane containing 40 μg of protein per lane from a HeLa cell lysate extract.

Similar content being viewed by others

References

  1. Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338–1351 (2002).

    Article  CAS  Google Scholar 

  2. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  CAS  Google Scholar 

  3. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  4. Mello, C.C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    Article  CAS  Google Scholar 

  5. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  6. Eystathioy, T. et al. The GW182 protein co-localizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9, 1171–1173 (2003).

    Article  CAS  Google Scholar 

  7. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

    Article  CAS  Google Scholar 

  8. Jakymiw, A. et al. The role of GW/P bodies in RNA processing and silencing. J. Cell Sci. 120, 1317–1323 (2007).

    Article  CAS  Google Scholar 

  9. Fillman, C. & Lykke-Andersen, J. RNA decapping inside and outside of processing bodies. Curr. Opin. Cell Biol. 17, 326–331 (2005).

    Article  CAS  Google Scholar 

  10. Andrei, M.A. et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11, 717–727 (2005).

    Article  CAS  Google Scholar 

  11. Lee, H.C., Cho, H. & Kim, Y.K. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation. Biochem. Biophys. Res. Commun. 369, 1160–1165 (2008).

    Article  CAS  Google Scholar 

  12. Lian, S. et al. Small interfering RNAs-mediated silencing induces target-dependent assembly of GW bodies. Mol. Biol. Cell 18, 3375–3387 (2007).

    Article  CAS  Google Scholar 

  13. Filipowicz, W., Bhattacharyya, S.N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  Google Scholar 

  14. Lau, N.C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    Article  CAS  Google Scholar 

  15. Buchan, J.R., Muhlrad, D. & Parker, R. P bodies promote stress granule assembly in Saccharomyces cerevisiae . J. Cell Biol. 183, 441–455 (2008).

    Article  CAS  Google Scholar 

  16. Anderson, P. & Kedersha, N. Stressful initiations. J. Cell Sci. 115, 3227–3234 (2002).

    CAS  PubMed  Google Scholar 

  17. Kedersha, N. & Anderson, P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30, 963–969 (2002).

    Article  CAS  Google Scholar 

  18. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  CAS  Google Scholar 

  19. Kedersha, N. & Anderson, P. Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61–81 (2007).

    Article  CAS  Google Scholar 

  20. Anderson, P. & Kedersha, N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 33, 141–150 (2008).

    Article  CAS  Google Scholar 

  21. Moser, J.J., Eystathioy, T., Chan, E.K.L. & Fritzler, M.J. Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. J. Neurosci. Res. 85, 3619–3631 (2007).

    Article  CAS  Google Scholar 

  22. Li, S. et al. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago-2-mediated silencing. J. Cell Sci. 121, 4134–4144 (2008).

    Article  CAS  Google Scholar 

  23. Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  Google Scholar 

  24. Tenenbaum, S.A., Carson, C.C., Lager, P.J. & Keene, J.D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl. Acad. Sci. USA 97, 14085–14090 (2000).

    Article  CAS  Google Scholar 

  25. Ikeda, K. et al. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody. J. Immunol. Methods 317, 38–44 (2006).

    Article  CAS  Google Scholar 

  26. Eystathioy, T. et al. A panel of monoclonal antibodies to cytoplasmic GW bodies and the mRNA binding protein GW182. Hybridoma Hybridomics 22, 79–86 (2003).

    Article  CAS  Google Scholar 

  27. Eystathioy, T. et al. Clinical and serological associations of autoantibodies to a novel cytoplasmic autoantigen, GW182 and GW bodies. J. Mol. Med. 81, 811–818 (2003).

    Article  CAS  Google Scholar 

  28. Jakymiw, A. et al. Disruption of GW bodies impairs mammalian mRNA interference. Nat. Cell Biol. 7, 1167–1174 (2005).

    Article  CAS  Google Scholar 

  29. Liu, J. et al. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1161–1166 (2005).

    Article  CAS  Google Scholar 

  30. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    Article  CAS  Google Scholar 

  31. Pillai, R.S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  Google Scholar 

  32. Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640–1647 (2005).

    Article  CAS  Google Scholar 

  33. Sen, G.L. & Blau, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633–636 (2005).

    Article  CAS  Google Scholar 

  34. Eulalio, A., Huntzinger, E. & Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol Biol. 15, 346–353 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Canadian Institutes for Health Research Grant MOP-57674 and NIH Grant AI47859. M.J.F. holds the Arthritis Society Chair. J.J.M. is supported by a CIHR Doctoral Research Award in the Area of Clinical Research and by an Alberta Heritage Foundation for Medical Research Studentship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J Fritzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, J., Chan, E. & Fritzler, M. Optimization of immunoprecipitation–western blot analysis in detecting GW182-associated components of GW/P bodies. Nat Protoc 4, 674–685 (2009). https://doi.org/10.1038/nprot.2009.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.34

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing