Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Continuous-flow bioseparation using microfabricated anisotropic nanofluidic sieving structures

Abstract

The anisotropic nanofluidic-filter (nanofilter) array (ANA) is a unique molecular-sieving structure for separating biomolecules. In this protocol we describe the fabrication of planar and vertical ANA chips and how to perform continuous-flow bioseparation using them. This protocol is most useful for bioengineers who are interested in developing automated multistep chip-based bioanalysis systems and assumes previous cleanroom microfabrication knowledge. The ANA consists of a two-dimensional periodic nanofilter array, and the designed structural anisotropy of ANA causes different-sized or charged biomolecules to follow distinct trajectories under applied electric fields, leading to efficient continuous-flow separation. Using microfluidic channels surrounding the ANA, the fractionated biomolecule streams are collected and routed to different fluid channels or reservoirs for convenient sample recovery and downstream bioanalysis. The ANA is physically robust and can be reused repeatedly. Compared with the conventional gel-based separation techniques, ANA offers the potential for faster separation, higher throughput and more convenient sample recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the fabrication process for both the planar and vertical ANA devices.
Figure 2: Structure of the microfabricated devices incorporating the ANA structure.
Figure 3: Experimental setup for separation of biomolecules through the ANA.

Similar content being viewed by others

References

  1. Goodsell, D.S. Bionanotechnology, Lessons from Nature (Wiley-Liss, Hoboken, New Jersey, 2004).

  2. Jain, K.K. Nanobiotechnology in Molecular Diagnostics, Current Techniques and Applications (Horizontal Bioscience, Norfolk, UK, 2006).

  3. Chu, S. Biology and polymer physics at the single-molecule level. Philos. Trans. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 361, 689–693 (2003).

    Article  CAS  Google Scholar 

  4. Fortina, P., Kricka, L.J., Surrey, S. & Grodzinski, P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol. 23, 168–173 (2005).

    Article  CAS  Google Scholar 

  5. Hinterdorfer, P. & Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nature Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  6. Eijkel, J.C.T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  7. Craighead, H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  8. Tegenfeldt, J.O et al. Micro- and nanofluidics for DNA analysis. Anal. Bioanal. Chem. 378, 1678–1692 (2004).

    Article  CAS  Google Scholar 

  9. Han, J., Fu, J. & Schoch, R.B. Molecular sieving using nanofilters: past, present and future. Lab Chip 8, 23–33 (2008).

    Article  CAS  Google Scholar 

  10. Fu, J., Mao, P. & Han, J. Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends Biotech. 26, 311–320 (2008).

    Article  CAS  Google Scholar 

  11. Slater, G.W. Theory of DNA electrophoresis: a look at some current challenges. Electrophoresis 21, 3873–3887 (2000).

    Article  CAS  Google Scholar 

  12. Whitesides, G.M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  13. El-Ali, J., Sorger, P.K. & Jensen, K.F. Cells on chips. Nature 442, 403–411 (2006).

    Article  CAS  Google Scholar 

  14. Han, J. & Craighead, H.G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  15. Huang, L.R. et al. A DNA prism: high-speed continuous fractionation of large DNA molecules. Nature Biotech. 20, 1048–1051 (2002).

    Article  CAS  Google Scholar 

  16. Baba, M. et al. DNA size separation using artificially nanostructured matrix. Appl. Phys. Lett. 83, 1468–1470 (2003).

    Article  CAS  Google Scholar 

  17. Kaji, N. et al. Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem. 76, 15–22 (2004).

    Article  CAS  Google Scholar 

  18. Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C . Continuous particle separation through deterministic lateral displacement. Science 304, 987–990 (2004).

    Article  CAS  Google Scholar 

  19. Fu, J., Schoch, R.B., Bow, H., Stevens, A.L., Tannenbaum, S.R. & Han, J. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotech. 2, 121–128 (2007).

    Article  CAS  Google Scholar 

  20. Mao, P. & Han, J. Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip 9, 586–591 (2009).

    Article  CAS  Google Scholar 

  21. Scopes, R.K. Protein Purification, Principles and Practice, ed. 3 (Springer-Verlag, New York, 1993).

  22. Giddings, J.C. Dynamics of Chromatography. Part 1. Principles and Theory (Marcel Dekker, New York, 1965).

  23. Yao, G. et al. SDS capillary gel electrophoresis of proteins in microfabricated channels. Proc. Natl. Acad. Sci. USA 96, 5372–5377 (1999).

    Article  CAS  Google Scholar 

  24. Callewaert, N. et al. Total serum protein N-glycome profiling on a capillary electrophoresis-microfluidics platform. Electrophoresis 25, 3128–3131 (2004).

    Article  CAS  Google Scholar 

  25. Turner, S.W., Perez, A.M., Lopez, A. & Craighead, H.G. Monolithic nanofluid sieving structures for DNA manipulation. J. Vac. Sci. Technol. B 16, 3835–3840 (1998).

    Article  CAS  Google Scholar 

  26. Cao, H. et al. Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81, 174–176 (2002).

    Article  CAS  Google Scholar 

  27. Fu, J., Mao, P. & Han, J. Nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87, 263902 (2005).

    Article  Google Scholar 

  28. Fu, J., Yoo, J. & Han, J. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys. Rev. Lett. 97, 018103 (2006).

    Article  Google Scholar 

  29. Eijkel, J.C.T. & van den Berg, A. Nanotechnology for membranes, filters and sieves. Lab Chip 6, 19–23 (2006).

    Article  CAS  Google Scholar 

  30. Austin, R. Nanofluidics: a fork in the nano-road. Nature Nanotech. 2, 121–128 (2007).

    Article  Google Scholar 

  31. Pamme, N. Continuous flow separations in microfluidic devices. Lab Chip 7, 1644–1659 (2007).

    Article  CAS  Google Scholar 

  32. Wulfkuhle, J.D., Liotta, L.A. & Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003).

    Article  CAS  Google Scholar 

  33. Righetti, P.G., Castagna, A., Herbert, B., Reymond, F. & Rossier, J.S. Prefractionation techniques in proteome analysis. Proteomics 3, 1397–1407 (2003).

    Article  CAS  Google Scholar 

  34. Mao, P. & Han, J. Fabrication and characterization of 20-nm nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip 5, 837–844 (2005).

    Article  CAS  Google Scholar 

  35. Bow, H., Fu, J. & Han, J. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters. Electrophoresis 29, 4646–4651 (2008).

    Article  CAS  Google Scholar 

  36. Huang, L.R. et al. Generation of large-area tunable uniform electric fields in microfluid arrays for rapid DNA separation. Tech. Dig. Int. Elect. Dev. Mtg. 363–366 (2002).

Download references

Acknowledgements

The authors acknowledge financial support from the National Institute of Health (EB005743), Korea Institute of Science and Technology–Intelligent Microsystems Center (KIST-IMC), and the Singapore-MIT Alliance (SMA-II, CE program). We also thank J. Yoo for his contribution in the experimental setup and H. Bow and S. Reto for helpful discussions. The MIT Microsystems Technology Laboratories is acknowledged for support in microfabrication.

Author information

Authors and Affiliations

Authors

Contributions

J.F., P.M. and J.H. conceived and designed the ANA chips. J.F. and P.M. fabricated the ANA chips. J.F. and P.M. designed and performed experiments, and analyzed data. J.F. and P.M. wrote manuscript.

Corresponding author

Correspondence to Jianping Fu.

Supplementary information

Supplementary Figure 1

Cleanroom equipments used for fabrication of the ANA structures (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Mao, P. & Han, J. Continuous-flow bioseparation using microfabricated anisotropic nanofluidic sieving structures. Nat Protoc 4, 1681–1698 (2009). https://doi.org/10.1038/nprot.2009.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.176

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing