Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Assessment of pyrogenic contaminations with validated human whole-blood assay

Abstract

We present an internationally validated protocol for the evaluation of pyrogenic contaminations using human whole blood. In the in vitro pyrogen test (IPT) the sample is incubated with fresh or cryopreserved human whole blood, and the proinflammatory cytokine interleukin-1β (IL-1β) is detected by enzyme-linked immunosorbent assay (ELISA). In addition to detecting pyrogenic contaminations in aqueous samples, e.g., parenteral drugs; adaptations allow the assessment of lipidic, toxic or immunomodulatory substances; detection of low-grade contaminations in large-volume parenterals, e.g., dialysis water and fluids; pyrogenicity assessment of solid materials, e.g., medical devices; and evaluation of airborne pyrogenic burden. In contrast to the rabbit pyrogen test and the limulus amoebocyte lysate (LAL) test, it requires no components of animal origin. In comparison with the LAL, it also detects nonlipopolysaccharide pyrogens. In comparison with other monocyte activation tests it requires no cell preparation steps or cell culture facilities. The procedure takes 21–35 h to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Illustration of an enzyme-linked immunosorbent assay (ELISA) plate after the completion of an in vitro pyrogen test (IPT).
Figure 3: Analysis of pyrogenic activity of a cooling lubricant sample.
Figure 4: Air quality assessment with the in vitro pyrogen test (IPT).
Figure 5: Assessment of pyrogenic activity or interference of a steel sample by the in vitro pyrogen test (IPT).
Figure 6: Comparison of the response of fresh and cryopreserved human whole blood to different concentrations of lipopolysaccharides (LPS).

Similar content being viewed by others

References

  1. Morath, S., Geyer, A. & Hartung, T. Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus . J. Exp. Med. 193, 393–397 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsuchida, K. et al. Detection of peptidoglycan and endotoxin in dialysate, using silkworm larvae plasma and limulus amebocyte lysate methods. Nephron 75, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Watson, D.W. Host-parasite factors in group A streptococcal infections. Pyrogenic and other effects of immunologic distinct exotoxins related to scarlet fever toxins. J. Exp. Med. 111, 255–284 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bodel, P.T. & Atkins, E. Studies in staphylococcal fever. V. Staphlococcal filtrate pyrogen. Yale J. Biol. Med. 38, 282–298 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brunson, K.W. & Watson, D.W. Pyrogenic specificity of streptococcal exotoxins, staphylococcal enterotoxin, and gram-negative endotoxin. Infect. Immun. 10, 347–351 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Atkins, E. & Huang, W.C. Studies on the pathogenesis of fever with influenzal viruses. I. The appearance of an endogenous pyrogen in the blood following intravenous injection of virus. J. Exp. Med. 107, 383–401 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braude, A.I., Mc, C.J. & Douglas, H. Fever from pathogenic fungi. J. Clin. Invest. 39, 1266–1276 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi, G.S. & Friedman, L. Characterization of the pyrogenicity of Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans . J. Bacteriol. 88, 660–666 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beeson, P.B. Temperature-elevating effect of a substance obtained from polymorphonuclear leucocytes. J. Clin. Invest. 27, 524 (1948).

    CAS  PubMed  Google Scholar 

  10. Dinarello, C.A. et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J. Exp. Med. 163, 1433–1450 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Dinarello, C.A. et al. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res. 562, 199–206 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Dinarello, C.A., Marnoy, S.O. & Rosenwasser, L.J. Role of arachidonate metabolism in the immunoregulatory function of human leukocytic pyrogen/lymphocyte-activating factor/interleukin 1. J. Immunol. 130, 890–895 (1983).

    CAS  PubMed  Google Scholar 

  13. Vellucci, S.V. & Parrott, R.F. Expression of mRNAs for vasopressin, oxytocin and corticotrophin releasing hormone in the hypothalamus, and of cyclooxygenases-1 and -2 in the cerebral vasculature, of endotoxin-challenged pigs. Neuropeptides 32, 439–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Rotondo, D., Abul, H.T., Milton, A.S. & Davidson, J. Pyrogenic immunomodulators increase the level of prostaglandin E2 in the blood simultaneously with the onset of fever. Eur. J. Pharmacol. 154, 145–152 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Li, S. et al. The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(-/-), but not in cyclooxygenase-1(-/-) mice. Brain Res. 825, 86–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Li, S., Ballou, L.R., Morham, S.G. & Blatteis, C.M. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta. Brain Res. 910, 163–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Li, S., Goorha, S., Ballou, L.R. & Blatteis, C.M. Intracerebroventricular interleukin-6, macrophage inflammatory protein-1 beta and IL-18: pyrogenic and PGE(2)-mediated? Brain Res. 992, 76–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hartung, T. & Wendel, A. Detection of pyrogens using human whole blood. Altex 12, 70–75 (1995).

    PubMed  Google Scholar 

  19. Wiegandt, M. Dissertation. Der Human Vollblut-Pyrogentest – Optimierung, Validierung und Vergleich mit den Arzneibuchmethoden. Heidelberg (2002).

  20. Hoffmann, S. et al. International validation of novel pyrogen tests based on human monocytoid cells. J. Immunol. Methods 298, 161–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Schindler, S. et al. International validation of pyrogen tests based on cryopreserved human primary blood cells. J. Immunol. Methods 316, 42–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Wendel, A. & Hartung, T. Test for determining pyrogenic effect of a material (DPC Biermann GmbH (Bad Nauheim, DE) Wendel, Albrecht (Tubingen, DE), Hartung, Thomas (Konstanz, DE), US Patent 5891728, 1999).

  23. Wendel, A. & Hartung, T. Use of frozen blood in a biological test method (DPC Biermann GmbH (Bad Nauheim, DE) Wendel, Albrecht (Tubingen, DE), Hartung, Thomas (Konstanz, DE), European Patent Ep0851231, 1997).

  24. Hartung, T. Method for assaying flowing media for microbial toxins (Hartung, Thomas (Konstanz, DE) European Patent EP1377835, 2002).

  25. Schindler, S. et al. Cryopreservation of human whole blood for pyrogenicity testing. J. Immunol. Methods 294, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Mazzotti, F. et al. In vitro pyrogen test–a new test method for solid medical devices. J. Biomed. Mater Res. A 80, 276–282 (2007).

    Article  PubMed  Google Scholar 

  27. Hasiwa, M., Kullmann, K., von Aulock, S., Klein, C. & Hartung, T. An in vitro pyrogen safety test for immune-stimulating components on surfaces. Biomaterials 28, 1367–1375 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kindinger, I. et al. A new method to measure air-borne pyrogens based on human whole blood cytokine response. J. Immunol. Methods 298, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Schindler, S. et al. Pyrogen testing of lipidic parenterals with a novel in vitro test–application of the IPT based on cryopreserved human whole blood. Pharmeur. Sci. Notes 2006, 1–7 (2006).

    CAS  PubMed  Google Scholar 

  30. Daneshian, M., Wendel, A., Hartung, T. & von Aulock, S. High sensitivity pyrogen testing in water and dialysis solutions. J. Immunol. Methods 336, 64–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Daneshian, M., Guenther, A., Wendel, A., Hartung, T. & von Aulock, S. In vitro pyrogen test for toxic or immunomodulatory drugs. J. Immunol. Methods 313, 169–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Welch, H., Calvery, H.O., McClosky, W.T. & Price, W.T. Method of preparation and test for bacterial pyrogen. J. Am. Pharm. Assoc. 3, 65–69 (1943).

    Article  Google Scholar 

  33. McClosky, W.T., Price, W.T., van Winkle, W.J., Welch, H. & Calvery, H.O. Results of the first USP collaborative study of pyrogens. J. Am. Pharm. Assoc. 32, 69–73 (1943).

    Article  CAS  Google Scholar 

  34. Grant, R. Emotional hypothermia in rabbits. Am. J. Physiol. 160, 285–290 (1950).

    Article  CAS  PubMed  Google Scholar 

  35. Hartung, T. et al. Novel pyrogen tests based on the human fever reaction. The report and recommendations of ECVAM Workshop 43. European Centre for the Validation of Alternative Methods. European Centre for the Validation of Alternative Methods. Altern. Lab. Anim. 29, 99–123 (2001).

    CAS  PubMed  Google Scholar 

  36. Fennrich, S. et al. Detection of endotoxins and other pyrogens using human whole blood. Dev. Biol. Stand. 101, 131–139 (1999).

    CAS  PubMed  Google Scholar 

  37. Dehus, O., Hartung, T. & Hermann, C. Endotoxin evaluation of eleven lipopolysaccharides by whole blood assay does not always correlate with limulus amebocyte lysate assay. J. Endotoxin Res. 12, 171–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Hartung, T. Statement on the validity of the in-vitro pyrogen test (European Centre for the Validation of Alternative Methods, Ispra, 2006).

  39. Pott, G.B., Chan, E.D., Dinarello, C.A. & Shapiro, L. Alpha-1-antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood. J. Leukoc. Biol. 85, 886–895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Poole, E.J., Dawson, P. & Gaines Das, R.E. Second International standard for endotoxin: calibration in an international collaborative study. J. Endotoxin Res. 4, 221–231 (1997).

    Article  CAS  Google Scholar 

  41. Dixon, W.J. Processing data for outliers. Biometrica 9, 74–89 (1953).

    Article  Google Scholar 

  42. Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 21, 27–58 (1950).

    Article  Google Scholar 

  43. Hoffmann, S., Luderitz-Puchel, U., Montag, T. & Hartung, T. Optimisation of pyrogen testing in parenterals according to different pharmacopoeias by probabilistic modelling. J. Endotoxin Res. 11, 25–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Nakayama, G.R., Caton, M.C., Nova, M.P. & Parandoosh, Z. Assessment of the Alamar Blue assay for cellular growth and viability in vitro . J. Immunol. Meth. 204, 205–208 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of countless scientists, technicians, students, authorities and funding institutions to the development and validation of these protocols.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the method and the writing of the manuscript.

Corresponding author

Correspondence to Thomas Hartung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daneshian, M., von Aulock, S. & Hartung, T. Assessment of pyrogenic contaminations with validated human whole-blood assay. Nat Protoc 4, 1709–1721 (2009). https://doi.org/10.1038/nprot.2009.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.159

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing