Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Artificial restriction DNA cutter for site-selective scission of double-stranded DNA with tunable scission site and specificity

Abstract

The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy of ARCUT.
Figure 2: Construction of fusion vector using ARCUT.
Figure 3: Formation of recombinant DNA from WWOX fragment and EGFP fragment using a ligation joint.
Figure 4: Scission of a linear DNA substrate by ARCUT.
Figure 5: Emission of fluorescence from WWOX-EGFP fusion protein expressed in mammalian cell (Cos-7).

Similar content being viewed by others

References

  1. Komiyama, M. & Sumaoka, J. Progress towards synthetic enzymes for phosphoester hydrolysis. Curr. Opin. Chem. Biol. 2, 751–757 (1998).

    Article  CAS  Google Scholar 

  2. Hegg, E.L. & Burstyn, J.N. Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordination chemistry. Coord. Chem. Rev. 173, 133–165 (1998).

    Article  CAS  Google Scholar 

  3. Blasko, A. & Bruice, T.C. Recent studies of nucleophilic, general-acid, and metal ion catalysis of phosphate diester hydrolysis. Acc. Chem. Res. 32, 475–484 (1999).

    Article  CAS  Google Scholar 

  4. Williams, N.H., Takasaki, B., Wall, M. & Chin, J. Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc. Chem. Res. 32, 485–493 (1999).

    Article  CAS  Google Scholar 

  5. Ott, R. & Krämer, R. DNA hydrolysis by inorganic catalysts. Appl. Microbiol. Biotechnol. 52, 761–767 (1999).

    Article  CAS  Google Scholar 

  6. Bashkin, J.K. Hydrolysis of phosphates, esters and related substrates by models of biological catalysts. Curr. Opin. Chem. Biol. 3, 752–758 (1999).

    Article  CAS  Google Scholar 

  7. Sreedhara, A. & Cowan, J.A. Catalytic hydrolysis of DNA by metal ions and complexes. J. Biol. Inorg. Chem. 6, 337–347 (2001).

    Article  CAS  Google Scholar 

  8. Franklin, S.J. Lanthanide-mediated DNA hydrolysis. Curr. Opin. Chem. Biol. 5, 201–208 (2001).

    Article  CAS  Google Scholar 

  9. Suh, J. Synthetic artificial peptidases and nucleases using macromolecular catalytic systems. Acc. Chem. Res. 36, 562–570 (2003).

    Article  CAS  Google Scholar 

  10. Liu, C., Wang, M., Zhang, T. & Sun, H. DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coord. Chem. Rev. 248, 147–168 (2004).

    Article  CAS  Google Scholar 

  11. Mancin, F., Scrimin, P., Tecilla, P. & Tonellato, U. Artificial metallonucleases. Chem. Commun. 2540–2548 (2005).

  12. Mancin, F. & Tecilla, P. Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids. New J. Chem. 31, 800–817 (2007).

    Article  CAS  Google Scholar 

  13. Strobel, S.A. & Dervan, P.B. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350, 172–174 (1991).

    Article  CAS  Google Scholar 

  14. Ferrin, L.J. & Cameriniotero, R.D. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science 254, 1494–1497 (1991).

    Article  CAS  Google Scholar 

  15. Veselkov, A.G., Demidov, V.V., Frank-Kamenetskii, M.D. & Nielsen, P.E. PNA as a rare genome-cutter. Nature 379, 214 (1996).

    Article  CAS  Google Scholar 

  16. Veselkov, A.G., Demidov, V.V., Nielsen, P.E. & Frank-Kamenetskii, M.D. A new class of genome rare cutters. Nucleic Acids Res. 24, 2483–2487 (1996).

    Article  CAS  Google Scholar 

  17. Arimondo, P.B. et al. Recognition and cleavage of DNA by rebeccamycin- or benzopyridoquinoxaline conjugated of triple helix-forming oligonucleotides. Bioorg. Med. Chem. 8, 777–784 (2000).

    Article  CAS  Google Scholar 

  18. Izvolsky, K.I., Demidov, V.V., Nielsen, P.E. & Frank-Kamenetskii, M.D. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs. Biochemistry 39, 10908–10913 (2000).

    Article  CAS  Google Scholar 

  19. Nomura, A. & Sugiura, Y. Sequence-selective and hydrolytic cleavage of DNA by zinc finger mutants. J. Am. Chem. Soc. 126, 15374–15375 (2004).

    Article  CAS  Google Scholar 

  20. Eisenschmidt, K. et al. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res. 33, 7039–7047 (2005).

    Article  CAS  Google Scholar 

  21. Nakatsukasa, T. et al. Site-specific DNA cleavage by artificial zinc finger-type nuclease with cerium-binding peptide. Biochem. Biophys. Res. Commun. 330, 247–252 (2005).

    Article  CAS  Google Scholar 

  22. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  Google Scholar 

  23. Yamamoto, Y. & Komiyama, M. Site-selective scission of double-stranded DNA by combining peptide nucleic acids and Ce(IV)EDTA. Chem. Lett. 33, 920–921 (2004).

    Article  CAS  Google Scholar 

  24. Yamamoto, Y., Uehara, A., Tomita, T. & Komiyama, M. Site-selective and hydrolytic two-strand scission of double-stranded DNA using Ce(IV)/EDTA and pseudo-complementary PNA. Nucleic Acids Res. 32, e153 (2004).

    Article  Google Scholar 

  25. Yamamoto, Y. et al. Chemical-reaction-based site-selective DNA cutter for PCR-free gene manipulation. Chembiochem 7, 673–677 (2006).

    Article  CAS  Google Scholar 

  26. Yamamoto, Y., Miura, K. & Komiyama, M. Site-specific scission of lambda phage genomic DNA by Ce(IV)/EDTA-based artificial restriction DNA cutter. Chem. Lett. 35, 594–595 (2006).

    Article  CAS  Google Scholar 

  27. Sumaoka, J., Yamamoto, Y., Kitamura, Y. & Komiyama, M. Artificial restriction DNA cutters (ARCUT) for future biotechnology. Curr. Org. Chem. 11, 463–475 (2007).

    Article  CAS  Google Scholar 

  28. Aiba, Y., Yamamoto, Y. & Komiyama, M. Activation of double-stranded DNA by one pcPNA strand for its site-selective scission with CeIV/EDTA. Chem. Lett. 36, 780–781 (2007).

    Article  CAS  Google Scholar 

  29. Yamamoto, Y. et al. Chemical modification of Ce(IV)/EDTA-based artificial restriction DNA cutter for versatile manipulation of double-stranded DNA. Nucleic Acids Res. 35, e53 (2007).

    Article  Google Scholar 

  30. Sumaoka, J., Azuma, Y. & Komiyama, M. Enzymatic manipulation of the fragments obtained by cerium (IV)-induced DNA scission: characterization of hydrolytic termini. Chem. Eur. J. 4, 205–209 (1998).

    Article  CAS  Google Scholar 

  31. Kitamura, Y. et al. Recombination of the GFP gene to the BFP gene using a man-made site-selective DNA cutter. J. Biol. Inorg. Chem. 11, 13–16 (2006).

    Article  CAS  Google Scholar 

  32. Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  Google Scholar 

  33. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  34. Haaima, G., Hansen, H.F., Christensen, L., Dahl, O. & Nielsen, P.E. Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. Nucleic Acids Res. 25, 4639–4643 (1997).

    Article  CAS  Google Scholar 

  35. Lohse, J., Dahl, O. & Nielsen, P.E. Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. USA 96, 11804–11808 (1999).

    Article  CAS  Google Scholar 

  36. Komiyama, M., Aiba, Y., Ishizuka, T. & Sumaoka, J. Solid-phase synthesis of pseudo-complementary peptide nucleic acids. Nat. Protoc. 3, 646–654 (2008).

    Article  CAS  Google Scholar 

  37. Komiyama, M., Takeda, N. & Shigekawa, H. Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications. Chem. Commun. 1443–1451 (1999).

  38. Kitamura, Y. & Komiyama, M. Preferential hydrolysis of gap and bulge sites in DNA by Ce(IV)/EDTA complex. Nucleic Acids Res. 30, e102 (2002).

    Article  Google Scholar 

  39. Christensen, L. et al. Solid-phase synthesis of peptide nucleic acids. J. Peptide Sci. 1, 175–183 (1995).

    Article  CAS  Google Scholar 

  40. Chen, W. et al. Site-selective DNA hydrolysis by combining Ce(IV)/EDTA with monophosphate-bearing oligonucleotides and enzymatic ligation of the scission fragments. J. Am. Chem. Soc. 126, 10285–10291 (2004).

    Article  CAS  Google Scholar 

  41. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Specially Promoted Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (for Y.A.). Support by the Global COE Program for Chemistry Innovation is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Komiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komiyama, M., Aiba, Y., Yamamoto, Y. et al. Artificial restriction DNA cutter for site-selective scission of double-stranded DNA with tunable scission site and specificity. Nat Protoc 3, 655–662 (2008). https://doi.org/10.1038/nprot.2008.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing