Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol describing the principles of cis-regulatory analysis in the sea urchin

Abstract

cis-Regulatory analysis (CRA) is the precise identification of the cis-acting genomic sequences regulating gene transcription. As such, CRA provides essential mechanistic insight into key biological processes such as development. The first phase of this protocol involves identification of a large (100 kb) clone of genomic material surrounding the gene of interest and use of this clone to establish a reliable and unambiguous reporter assay. In the second phase, phylogenetic footprinting is used to identify candidate regulatory modules; these genomic sequences are then recursively tested for reporter activity. In the final phase, potential transcription factor binding sites are identified and disrupted in reporter constructs for individual testing. The strengths of this method reflect the use of large clones containing all relevant genomic regulatory sequences to establish a reporter assay with high fidelity. Given these foundational elements, predicted or suspected regulatory inputs can be rigorously tested and novel regulatory inputs identified. Although the expected time line varies greatly with the depth of information required, results may be obtained in as little as 4–6 months, but more detailed analyses will require several years to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene network subcircuits which yield ambiguous or uninformative network perturbation data.
Figure 2: General work flow for cis-regulatory analysis (CRA).

Similar content being viewed by others

References

  1. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. (Academic Press, San Diego, California, 2006).

    Google Scholar 

  2. Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  Google Scholar 

  3. Smith, J., Theodoris, C. & Davidson, E.H. A gene regulatory network subcircuit that drives a dynamic pattern of gene expression. Science 318, 794–797 (2007).

    Article  CAS  Google Scholar 

  4. Smith, J., Kraemer, E., Liu, H., Theodoris, C. & Davidson, E. A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev. Biol. 313, 863–875 (2008).

    Article  CAS  Google Scholar 

  5. Yuh, C.H., Dorman, E.R., Howard, M.L. & Davidson, E.H. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev. Biol. 269, 536–551 (2004).

    Article  CAS  Google Scholar 

  6. Minokawa, T., Wikramanayake, A.H. & Davidson, E.H. cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev. Biol. 288, 545–558 (2005).

    Article  CAS  Google Scholar 

  7. Ransick, A. & Davidson, E.H. cis-Regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev. Biol. 297, 587–602 (2006).

    Article  CAS  Google Scholar 

  8. Lee, P.Y., Nam, J. & Davidson, E.H. Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrotus purpuratus embryo. Dev. Biol. 307, 434–445 (2007).

    Article  CAS  Google Scholar 

  9. Revilla-i-Domingo, R., Minokawa, T. & Davidson, E.H. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev. Biol. 274, 438–451 (2004).

    Article  CAS  Google Scholar 

  10. Amore, G. & Davidson, E.H. cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo. Dev. Biol. 293, 555–564 (2006).

    Article  CAS  Google Scholar 

  11. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  Google Scholar 

  12. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman & Hall/CRC, London, 2006).

    Google Scholar 

  13. Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  Google Scholar 

  14. Oliveri, P. & Davidson, E.H. Gene regulatory network controlling embryonic specification in the sea urchin. Curr. Opin. Genet. Dev. 14, 351–360 (2004).

    Article  CAS  Google Scholar 

  15. Clyde, D.E. et al. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426, 849–853 (2003).

    Article  CAS  Google Scholar 

  16. Stanojevic, D., Small, S. & Levine, M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254, 1385–1387 (1991).

    Article  CAS  Google Scholar 

  17. Stathopoulos, A. & Levine, M. Genomic regulatory networks and animal development. Dev. Cell 9, 449–462 (2005).

    Article  CAS  Google Scholar 

  18. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  19. Oliveri, P., Carrick, D.M. & Davidson, E.H. A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol. 246, 209–228 (2002).

    Article  CAS  Google Scholar 

  20. Revilla-I-Domingo, R., Oliveri, P. & Davidson, E.H. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc. Natl. Acad. Sci. USA 104, 12383–12388 (2007).

    Article  CAS  Google Scholar 

  21. Cameron, R.A. et al. A sea urchin genome project: sequence scan, virtual map, and additional resources. Proc. Natl. Acad. Sci. USA 97, 9514–9518 (2000).

    Article  Google Scholar 

  22. Nam, J. et al. cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev. Biol. 306, 860–869 (2007).

    Article  CAS  Google Scholar 

  23. Yuh, C.H. et al. Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev. Biol. 246, 148–161 (2002).

    Article  CAS  Google Scholar 

  24. Bolouri, H. & Davidson, E.H. Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA 100, 9371–9376 (2003).

    Article  CAS  Google Scholar 

  25. Cameron, R.A. et al. An evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules. Proc. Natl. Acad. Sci. USA 102, 11769–11774 (2005).

    Article  CAS  Google Scholar 

  26. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  Google Scholar 

  27. Cameron, R.A. et al. Unusual gene order and organization of the sea urchin hox cluster. J. Exp. Zoolog. B Mol. Dev. Evol. 306, 45–58 (2006).

    Article  Google Scholar 

  28. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  Google Scholar 

  29. Rast, J.P. Transgenic manipulation of the sea urchin embryo. In Developmental Biology Protocols Vol. II (eds. Tuan, R.S. & Lo, C.W.) (Humana Press, Totowa, New Jersey, 2000).

    Google Scholar 

  30. Range, R.C., Venuti, J.M. & McClay, D.R. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev. Biol. 279, 252–267 (2005).

    Article  CAS  Google Scholar 

  31. Castro, B., Barolo, S., Bailey, A.M. & Posakony, J.W. Lateral inhibition in proneural clusters: cis-regulatory logic and default repression by Suppressor of Hairless. Development 132, 3333–3344 (2005).

    Article  CAS  Google Scholar 

  32. Imai, K.S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Eric H. Davidson in whose laboratory this protocol was developed and who provided the primary logical arguments underpinning this methodology. Many thanks also to members of the Eric H. Davidson laboratory group, past and present, for their contributions. The author thanks Jongmin Nam, Smadar Ben-Tabou De-Leon and Andrew Ransick for thoughtful discussions, insights and suggestions. Thanks also to Jenifer Croce and Andrew Ransick for a critical reading of the article. This work is supported by NIH GM-75089. The author is supported by a California Institute of Regenerative Medicine fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J. A protocol describing the principles of cis-regulatory analysis in the sea urchin. Nat Protoc 3, 710–718 (2008). https://doi.org/10.1038/nprot.2008.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.39

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing