Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detection and quantification of viable airborne bacteria and fungi using solid-phase cytometry

Abstract

This protocol describes the use of solid-phase cytometry for the enumeration of airborne bacteria and fungi. In contrast with conventional methods, accurate results can be obtained in real time, especially for air samples with low numbers of microorganisms. Air samples are collected by impaction on a water-soluble polymer that is subsequently dissolved. Part of the sample can be filtered over two membrane filters with different pore sizes. One filter is used to obtain a total count of all viable microorganisms, and a second filter is used to determine the number of airborne fungi. Microorganisms present on the filter are labeled with a viability substrate and subsequently detected and quantified using a solid-phase cytometer. The detected spots are microscopically validated using an epifluorescence microscope to discriminate between bacteria, fungi and fluorescent particles. The whole procedure takes 5 h to complete and results in the accurate quantification of airborne bacteria and fungi for samples with a low or high microbial load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of SPC.
Figure 2: Overview of the software parameters used by the computer to discriminate among microorganisms.
Figure 3: Flow diagram of the procedure.
Figure 4: Anticipated results.
Figure 5: Anticipated results.

Similar content being viewed by others

References

  1. Lisle, J.T., Hamilton, M.A., Willse, A.R. & McFeters, G.A. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water. Appl. Environ. Microbiol. 70, 5343–6348 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mignon-Godefroy, K., Guillet, J.-G. & Butor, C. Solid phase cytometry for detection of rare events. Cytometry 27, 336–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Joux, F. & Lebaron, P. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2, 1523–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Broadaway, S.C., Barton, S.A. & Pyle, B.H. Rapid staining and enumeration of small numbers of total bacteria in water by solid-phase laser cytometry. Appl. Environ. Microbiol. 69, 4272–4273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parthuisot, N., Catala, P., Lemarchand, K., Baudart, J. & Lebaron, P. Evaluation of Chemchrome V6 for bacterial viability assessment in waters. J. Appl. Microbiol. 89, 370–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Reynolds, D.T. & Fricker, C.R. Application of laser scanning for the rapid and automated detection of bacteria in water samples. J. Appl. Microbiol. 86, 785–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. De Vos, M.M. & Nelis, H.J. An improved method for the selective detection of fungi in hospital waters by solid phase cytometry. J. Microbiol. Meth. 67, 557–565 (2006).

    Article  CAS  Google Scholar 

  8. Van Poucke, S.O. & Nelis, H.J. A 210-min solid phase cytometry test for the enumeration of Escherichia coli in drinking water. J. Appl. Microbiol. 89, 390–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Pyle, B.H., Broadaway, S.C. & McFeters, G.A. Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl. Environ. Microbiol. 65, 1966–1972 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. de Roubin, M.-R. et al. Application of laser scanning cytometry followed by epifluorescent and differental interference contrast microscopy for the detection and enumeration of Cryptoporidium and Giardia in raw and potable waters. J. Appl. Microbiol. 93, 599–607 (2002).

    Article  PubMed  Google Scholar 

  11. Rushton, P., Place, B.M. & Lightfoot, N.F. An evaluation of a laser scanning device for the detection of Cryptosporidium parvum in treated water samples. Lett. Appl. Microbiol. 30, 303–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Aurell, H. et al. Rapid detection and enumeration of Legionella pneumophila in hot water systems by solid-phase cytometry. Appl. Environ. Microbiol. 70, 1651–1657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pougnard, C. et al. Rapid detection and enumeration of Naegleria fowleri in surface waters by solid-phase cytometry. Appl. Environ. Microbiol. 68, 3102–3107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. West, N.J. et al. Rapid quantification of the toxic alga Prymnesium parvum in natural samples by use of a specific monoclonal antibody and solid-phase cytometry. Appl. Environ. Microbiol. 72, 860–868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baudart, J., Olaizola, A., Coallier, J., Gauthier, V. & Laurent, P. Assessment of a new technique combining a viability test, whole-cell hybridization and laser-scanning cytometry for the direct counting of viable Enterobacteriaceae cells in drinking water. FEMS Microbiol. Lett. 243, 405–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lepeuple, S., Delabre, K., Gilouppe, S., Intertaglia, L. & de Roubin, M.R. Laser scanning detection of FISH-labelled Escherichia coli from water samples. Water Sci. Technol. 47, 123–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Töbe, K., Eller, G. & Medlin, L.K. Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae). J. Plankt. Res. 28, 643–657 (2006).

    Article  Google Scholar 

  18. Cools, I. et al. Solid phase cytometry as a tool to detect viable but non-culturable cells of Campylobacter jejuni . J. Microbiol. Meth. 63, 107–114 (2005).

    Article  CAS  Google Scholar 

  19. Vanhee, L.M.E., Nelis, H.J. & Coenye, T. Enumeration of airborne bacteria and fungi using solid phase cytometry. J. Microbiol. Meth. 72, 12–19 (2008).

    Article  CAS  Google Scholar 

  20. De Vos, M.M. & Nelis, H.J. Detection of Aspergillus fumigatus hyphae by solid phase cytometry. J. Microbiol. Meth. 55, 557–564 (2003).

    Article  Google Scholar 

  21. De Vos, M.M., Sanders, N.N. & Nelis, H.J. Detection of Aspergillus fumigatus hyphae in respiratory secretions by membrane filtration, fluorescent labeling and laser scanning. J. Microbiol. Meth. 64, 420–423 (2006).

    Article  CAS  Google Scholar 

  22. Bauters, T.G.M., Swinne, D., Stove, V. & Nelis, H.J. Detection of single cells of Cryptococcus neoformans in clinical samples by solid-phase cytometry. J. Clin. Microbiol. 41, 1736–1737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Catala, P. et al. Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters. FEMS Microbiol. Lett. 178, 219–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cruz, P. & Buttner, M.P. Analysis of bioaerosol samples. In Manual of Environmental Microbiology 3rd edn. (eds. Hurst, C.J. et al.) 68.952–68.960 (ASM Press, Washington D.C., USA, 2007).

    Google Scholar 

  25. Lemarchand, K., Parthuisot, N., Catala, P. & Lebaron, P. Comparative assessment of epifluorescence microscopy, flow cytometry and solid-phase cytometry used in the enumeration of specific bacteria in water. Aquat. Microbial. Ecol. 25, 301–309 (2001).

    Article  Google Scholar 

  26. Prigione, V., Lingua, G. & Filipello Marchisio, V. Development and use of flow cytometry for detection of airborne fungi. Appl. Environ. Microbiol. 70, 1360–1365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alvarez, A.J., Buttner, M.P. & Stetzenbach, L.D. PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl. Environ. Microbiol. 61, 3639–3644 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giovannangelo, M.E.C.A. et al. Levels and determinants of β (1 → 3)-glucans and fungal extracellular polysaccharides in house dust of (pre-)schoolchildren in three European countries. Environ. Internat. 33, 9–16 (2007).

    Article  Google Scholar 

  29. Robine, E., Lacaze, I., Moularat, S., Ritoux, S. & Boissier, M. Characterisation of exposure to airborne fungi: measurement of ergosterol. J. Microbiol. Meth. 63, 185–192 (2005).

    Article  CAS  Google Scholar 

  30. Venkateswaran, K., Hattori, N., La Duc, M.T. & Kern, R. ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 52, 367–377 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent technical assistance of M. Battista. This research was financially supported by the Bijzonder Onderzoeksfonds of Ghent University (project B/07601/02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lies M E Vanhee, Hans J Nelis or Tom Coenye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanhee, L., Nelis, H. & Coenye, T. Detection and quantification of viable airborne bacteria and fungi using solid-phase cytometry. Nat Protoc 4, 224–231 (2009). https://doi.org/10.1038/nprot.2008.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.228

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing