Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Touchdown PCR for increased specificity and sensitivity in PCR amplification

Abstract

Touchdown (TD) PCR offers a simple and rapid means to optimize PCRs, increasing specificity, sensitivity and yield, without the need for lengthy optimizations and/or the redesigning of primers. TD-PCR employs an initial annealing temperature above the projected melting temperature (Tm) of the primers being used, then progressively transitions to a lower, more permissive annealing temperature over the course of successive cycles. Any difference in Tm between correct and incorrect annealing will produce an exponential advantage of twofold per cycle. TD-PCR has found wide applicability in standard PCR protocols, including reverse transcriptase-dependent PCR, as well as in the generation of cDNA libraries and single nucleotide polymorphism screening. TD-PCR is particularly useful for templates that are difficult to amplify but can also be standardly used to enhance specificity and product formation. The procedure takes between 90 and 120 min, depending on the template length.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Saiki, R.K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    CAS  Article  Google Scholar 

  2. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    CAS  Article  Google Scholar 

  3. Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51 (Part 1): 263–273 (1986).

    CAS  Article  Google Scholar 

  4. Kolmodin, L.A. & Birch, D.E. Polymerase chain reaction. Basic principles and routine practice. Methods Mol. Biol. 192, 3–18 (2002).

    CAS  PubMed  Google Scholar 

  5. Kramer, M.F. & Coen, D.M. Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr. Protoc. Mol. Biol. Chapter 15, Unit 15 1 (2001).

  6. Don, R.H., Cox, P.T., Wainwright, B.J., Baker, K. & Mattick, J.S. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008 (1991).

    CAS  Article  Google Scholar 

  7. Wu, W.M. et al. Touchdown thermocycling program enables a robust single nucleotide polymorphism typing method based on allele-specific real-time polymerase chain reaction. Anal. Biochem. 339, 290–296 (2005).

    CAS  Article  Google Scholar 

  8. Nolan, T., Hands, R.E. & Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    CAS  Article  Google Scholar 

  9. Panjkovich, A. & Melo, F. Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics 21, 711–722 (2005).

    CAS  Article  Google Scholar 

  10. Kibbe, W.A. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007).

    Article  Google Scholar 

  11. Borer, P.N., Dengler, B., Tinoco Jr. I. & Uhlenbeck, O.C. Stability of ribonucleic acid double-stranded helices. J. Mol. Biol. 86, 843–853 (1974).

    CAS  Article  Google Scholar 

  12. Steger, G. Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction. Nucleic Acids Res. 22, 2760–2768 (1994).

    CAS  Article  Google Scholar 

  13. SantaLucia Jr. J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998).

    CAS  Article  Google Scholar 

  14. SantaLucia Jr. J., Allawi, H.T. & Seneviratne, P.A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

    CAS  Article  Google Scholar 

  15. Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 24, 4501–4505 (1996).

    CAS  Article  Google Scholar 

  16. Hecker, K.H. & Roux, K.H. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20, 478–485 (1996).

    CAS  Article  Google Scholar 

  17. Zhang, Z. & Martineau, D. Single-tube heminested PCR coupled with 'touchdown' PCR for the analysis of the walleye dermal sarcoma virus env gene. J. Virol. Methods 60, 29–37 (1996).

    CAS  Article  Google Scholar 

  18. Rubie, C. et al. Multistep-touchdown vectorette-PCR—a rapid technique for the identification of IVS in genes. Biotechniques 27, 414–416, 418 (1999).

    CAS  Article  Google Scholar 

  19. Duckworth, A.W. & Rule, S.A. The use of 'touchdown' polymerase chain reaction increases the sensitivity and specificity of t(11;14)(q13;q32) detection in patients with mantle cell lymphoma. Br. J. Haematol. 121, 952–953 (2003).

    CAS  Article  Google Scholar 

  20. De la Horra, C. et al. Comparison of single and touchdown PCR protocols for detecting Pneumocystis jirovecii DNA in paraffin-embedded lung tissue samples. J. Eukaryot. Microbiol. 53 (Suppl 1): S98–S99 (2006).

    CAS  Article  Google Scholar 

  21. Fietto, J.L., DeMarco, R. & Verjovski-Almeida, S. Use of degenerate primers and touchdown PCR for construction of cDNA libraries. Biotechniques 32, 1404–1408, 1410–1411 (2002).

    CAS  Article  Google Scholar 

  22. Piraee, M. & Vining, L.C. Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230. J. Ind. Microbiol. Biotechnol. 29, 1–5 (2002).

    CAS  Article  Google Scholar 

  23. Levano-Garcia, J., Verjovski-Almeida, S. & da Silva, A.C. Mapping transposon insertion sites by touchdown PCR and hybrid degenerate primers. Biotechniques 38, 225–229 (2005).

    CAS  Article  Google Scholar 

  24. Kornmann, B., Preitner, N., Rifat, D., Fleury-Olela, F. & Schibler, U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res. 29, E51–E51 (2001).

    CAS  Article  Google Scholar 

  25. Ding, W., Zou, H., Dai, J. & Duan, Z. Combining restriction digestion and touchdown PCR permits detection of trace isoforms of histamine H3 receptor. Biotechniques 39, 841–845 (2005).

    CAS  Article  Google Scholar 

  26. Li, J., Kuang, K., Nielsen, S. & Fischbarg, J. Molecular identification and immunolocalization of the water channel protein aquaporin 1 in CBCECs. Invest. Ophthalmol. Vis. Sci. 40, 1288–1292 (1999).

    CAS  PubMed  Google Scholar 

  27. Ault, G.S., Ryschkewitsch, C.F. & Stoner, G.L. Type-specific amplification of viral DNA using touchdown and hot start PCR. J. Virol. Methods 46, 145–156 (1994).

    CAS  Article  Google Scholar 

  28. Roux, K.H. Single-step PCR optimization using touchdown and stepdown PCR programming. Methods Mol. Biol. 192, 31–36 (2002).

    CAS  PubMed  Google Scholar 

  29. Strauss, W.M. Preparation of genomic DNA from mammalian tissue. Curr. Protoc. Mol. Biol., Chapter 2, Unit 2.2 (2001).

  30. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006).

    CAS  Article  Google Scholar 

  31. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  32. Yuryev, A.E. PCR Primer Design (ed. Yuryev, A.) (Humana Press, Totowa, NJ, 2007).

    Book  Google Scholar 

  33. Brody, J.R., Calhoun, E.S., Gallmeier, E., Creavalle, T.D. & Kern, S.E. Ultra-fast high-resolution agarose electrophoresis of DNA and RNA using low-molarity conductive media. Biotechniques 37, 598, 600, 602 (2004).

    CAS  Article  Google Scholar 

  34. Brody, J.R. & Kern, S.E. History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem. 333, 1–13 (2004).

    CAS  Article  Google Scholar 

  35. Mokaddas, E., Ahmad, S. & Abal, A.T. Molecular fingerprinting of isoniazid-resistant Mycobacterium tuberculosis isolates from chest diseases hospital in Kuwait. Microbiol. Immunol. 46, 767–771 (2002).

    CAS  Article  Google Scholar 

  36. Ahmad, S., Mokaddas, E. & Jaber, A.A. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis strains by PCR-RFLP targeting embB codons 306 and 497 and iniA codon 501 mutations. Mol. Cell. Probes 18, 299–306 (2004).

    CAS  Article  Google Scholar 

  37. Ahmad, S. & Mokaddas, E. The occurrence of rare rpoB mutations in rifampicin-resistant clinical Mycobacterium tuberculosis isolates from Kuwait. Int. J. Antimicrob. Agents 26, 205–212 (2005).

    CAS  Article  Google Scholar 

  38. Mokaddas, E. & Ahmad, S. Species spectrum of nontuberculous mycobacteria isolated from clinical specimens in Kuwait. Curr. Microbiol. 56, 413–417 (2008).

    CAS  Article  Google Scholar 

  39. Harboe, M. et al. Cross-reaction between mammalian cell entry (Mce) proteins of Mycobacterium tuberculosis. Scand. J. Immunol. 56, 580–587 (2002).

    CAS  Article  Google Scholar 

  40. Ahmad, S., El-Shazly, S., Mustafa, A.S. & Al-Attiyah, R. Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand. J. Immunol. 60, 382–391 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S Mattick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korbie, D., Mattick, J. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3, 1452–1456 (2008). https://doi.org/10.1038/nprot.2008.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.133

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing