Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox

Abstract

The manner in which microorganisms utilize their metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic networks. Herein, we present the constraint-based reconstruction and analysis toolbox, a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraint-based approach. Specifically, this software allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules. Functions enabling these calculations are included in the toolbox, allowing a user to input a genome-scale metabolic model distributed in Systems Biology Markup Language format and perform these calculations with just a few lines of code. The results are predictions of cellular behavior that have been verified as accurate in a growing body of research. After software installation, calculation time is minimal, allowing the user to focus on the interpretation of the computational results.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: COBRA.
Figure 2: Stoichiometric representation of metabolic networks.
Figure 3: The workflow for using the COBRA Toolbox.
Figure 4: Robustness analysis.
Figure 5: Dynamic FBA.
Figure 6: Single and double deletion predictions using S. cerevisiae iND750.
Figure 7: FVA.
Figure 8: Flux sampling of E. coli.
Figure 9: Correlated reaction sets in yeast.

References

  1. Bork, P. Is there biological research beyond Systems Biology? A comparative analysis of terms. Mol. Syst. Biol. 1 Epub 2005 May 25 (2005).

    Article  Google Scholar 

  2. Papin, J.A., Hunter, T., Palsson, B.O. & Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell. Biol. 6, 99–111 (2005).

    Article  CAS  Google Scholar 

  3. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  4. Brynildsen, M.P., Wong, W.W. & Liao, J.C. Transcriptional regulation and metabolism. Biochem. Soc. Trans. 33, 1423–1426 (2005).

    Article  CAS  Google Scholar 

  5. Reed, J.L., Famili, I., Thiele, I. & Palsson, B.O. Towards multidimensional genome annotation. Nat. Rev. Genet. 7, 130–141 (2006).

    Article  CAS  Google Scholar 

  6. Papin, J.A. et al. Comparison of network-based pathway analysis methods. Trends Biotechnol. 22, 400–405 (2004).

    Article  CAS  Google Scholar 

  7. Papin, J.A. & Palsson, B.O. The JAK–STAT signaling network in the human B-cell: an extreme signaling pathway analysis. Biophys. J. 87, 37–46 (2004).

    Article  CAS  Google Scholar 

  8. Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Article  Google Scholar 

  9. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  10. Fong, S.S. & Palsson, B.O. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

    Article  CAS  Google Scholar 

  11. Hong, S.H. et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens . Nat. Biotechnol. 22, 1275–1281 (2004).

    Article  CAS  Google Scholar 

  12. David, H., Akesson, M. & Nielsen, J. Reconstruction of the central carbon metabolism of Aspergillus niger . Eur. J. Biochem./FEBS 270, 4243–4253 (2003).

    Article  CAS  Google Scholar 

  13. Sheikh, K., Forster, J. & Nielsen, L.K. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus . Biotechnol. Prog. 21, 112–121 (2005).

    Article  CAS  Google Scholar 

  14. Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae . Genome Res. 15, 1421–1430 (2005).

    Article  CAS  Google Scholar 

  15. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  16. Duarte, N.C., Herrgard, M.J. & Palsson, B.O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004).

    Article  CAS  Google Scholar 

  17. Fong, S.S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).

    Article  CAS  Google Scholar 

  18. Wang, Q., Chen, X., Yang, Y. & Zhao, X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl. Microbiol. Biotechnol. (2006).

  19. Alper, H., Jin, Y.S., Moxley, J.F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli . Metab. Eng. 7, 155–164 (2005).

    Article  CAS  Google Scholar 

  20. Klamt, S., Stelling, J., Ginkel, M. & Gilles, E.D. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19, 261–269 (2003).

    Article  CAS  Google Scholar 

  21. Zamboni, N., Fischer, E. & Sauer, U. FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6, 209 (2005).

    Article  Google Scholar 

  22. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  Google Scholar 

  23. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  24. Varma, A. & Palsson, B.O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    Article  CAS  Google Scholar 

  26. Mahadevan, R. & Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003).

    Article  CAS  Google Scholar 

  27. Reed, J.L. & Palsson, B.O. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Nathan Price, Vasiliy Portnoy, Jan Schellenberger and Christian Barrett for help with the COBRA Toolbox development and testing. Support for this work was provided by the National Institutes of Health (RO1 GM071808, 2R01 GM062791-04A2) and National Science Foundation (BES-0331342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J Herrgard.

Ethics declarations

Competing interests

These studies were supported by grants from the NIH/NSF (RO1 GM071808, 2R01 GM062791-04A2, BES-0331342). The investigator(s) have a financial interest in Genomatica, Inc. Although this grant has been identified for conflict of interest management based on the overall scope of the project and its potential to benefit Genomatica, Inc, the research findings included in this publication may not necessarily directly relate to the interests of Genomatica, Inc.

Supplementary information

Supplementary Manual

Quantitative Prediction of Cellular Metabolism with Constraint-based Models: The COBRA Toolbox (DOC 55 kb)

Supplementary Data 1 (XML 1540 kb)

Supplementary Data 2 (XML 1830 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becker, S., Feist, A., Mo, M. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2, 727–738 (2007). https://doi.org/10.1038/nprot.2007.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.99

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing