Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simple protocols for NMR analysis of the enantiomeric purity of chiral primary amines

Abstract

A simple three-component chiral derivatization protocol for determining the enantiopurity of chiral primary amines by 1H NMR spectroscopic analysis is described here. The method involves condensation of the amines with 2-formylphenylboronic acid and enantiopure 1,1′-bi-2-naphthol. This approach affords a mixture of diastereoisomeric iminoboronate esters whose ratio can be determined by the integration of well-resolved diastereotopic resonances in their 1H NMR spectra, thus enabling the enantiopurity of the parent amine to be determined easily. The protocol, as described, takes less than 90 min to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiral derivatization protocol used for determining the ee of a chiral primary amine via derivatization with 2-formylphenyl boronic acid and (S)-BINOL.
Figure 2: Range of racemic primary amines successfully derivatized to afford diastereoisomeric iminoboronate esters that display one or more sets of baseline-resolved diastereotopic resonances in their 1H NMR spectra.
Figure 3: Derivatization of (rac)-α-methylbenzylamine.
Figure 4: Determination of the enantiomeric exces of scalemic α-methylbenzylamine.

Similar content being viewed by others

References

  1. Koutsaplis, M. et al. A new diastereoselective aza–allyl conjugate addition–Michael addition–ring closure reaction sequence and its application in the construction of six contiguous stereogenic centres. Chem. Commun. 3580–3582 (2007).

  2. Bull, S.D. et al. Enantiodiscrimination of racemic electrophiles by diketopiperazine enolates: asymmetric synthesis of methyl 2-amino-3-aryl-butanoates and 3-methyl-aspartates. Tetrahedron 62, 7911–7925 (2006).

    Article  CAS  Google Scholar 

  3. Kitamura, M., Shirakawa, S. & Maruoka, K. Powerful chiral phase-transfer catalysts for the asymmetric synthesis of alpha-alkyl- and alpha,alpha-dialkyl-alpha-amino acids. Angew. Chem. Int. Ed. 44, 1549–1551 (2005).

    Article  CAS  Google Scholar 

  4. Wang, C.-J., Sun, X. & Zhang, X. Enantioselective hydrogenation of allylphthalimides: an efficient method for the synthesis of beta-methyl chiral amines. Angew. Chem. Int. Ed. 44, 4933–4935 (2005).

    Article  CAS  Google Scholar 

  5. Sugiura, M., Hirano, K. & Kobayashi, S. alpha-Aminoallylation of aldehydes with ammonia: stereoselective synthesis of homoallylic primary amines. J. Am. Chem. Soc. 126, 7182–7183 (2004).

    Article  CAS  Google Scholar 

  6. Bull, S.D. et al. 2-Halo-diketopiperazines as chiral glycine cation equivalents. Tetrahedron Asymmetry 15, 3989–4001 (2004).

    Article  CAS  Google Scholar 

  7. Kadyrov, R. & Riermeier, T.H. Highly enantioselective hydrogen-transfer reductive amination: catalytic asymmetric synthesis of primary amines. Angew. Chem. Int. Ed. 42, 5472–5474 (2003).

    Article  CAS  Google Scholar 

  8. Bull, S.D. et al. Asymmetric synthesis of β-pyridyl-β-amino-acid derivatives. J. Chem. Soc. Perkin Trans. I 34, 1858–1868 (2002).

    Article  Google Scholar 

  9. Mellin-Morlière, C., Aitken, D.J., Bull, S.D., Davies, S.G. & Husson, H-P. A practical asymmetric synthesis of homochiral α-arylglycines. Tetrahedron Asymmetry 12, 149–155 (2001).

    Article  Google Scholar 

  10. Bull, S.D., Davies, S.G. & O'Shea, M.D. Stereoselective conjugate addition of organocuprates to a dehydroalanine-derived diketopiperazine. J. Chem. Soc. Perkin Trans. I 3657–3658 (1998).

  11. Rodríguez-Escrich, S., Popa, D., Jimeno, C., Vidal-Ferran, A. & Pericàs, M.A. (S)-2-[(R)-fluoro(phenyl)methyl]oxirane: a general reagent for determining the ee of alpha-chiral amines. Org. Lett. 7, 3829–3832 (2005).

    Article  Google Scholar 

  12. Chin, J., Kim, D.C., Kim, H.-J., Panosyan, F.B. & Kim, K.M. Chiral shift reagent for amino acids based on resonance-assisted hydrogen bonding. Org. Lett. 6, 2591–2593 (2004).

    Article  CAS  Google Scholar 

  13. López, B., Quiñoá, E. & Riguera, R. Complexation with barium(II) allows the inference of the absolute configuration of primary amines by NMR. J. Am. Chem. Soc. 121, 9724–9725 (1999).

    Article  Google Scholar 

  14. Manuel Seco, J., Quiñoá, E. & Riguera, R. Boc-phenylglycine: the reagent of choice for the assignment of the absolute configuration of α-chiral primary amines by 1H NMR spectroscopy. J. Org. Chem. 64, 4669–4675 (1999).

    Article  Google Scholar 

  15. Chinchilla, R., Falvello, L.R. & Nájera, C. Determination of the absolute configuration of amines and α-amino acids by 1H NMR of (R)-O-aryllactic acid amides. J. Org. Chem. 61, 7285–7290 (1996).

    Article  CAS  Google Scholar 

  16. Hoye, T.R. & Renner, M.K. Applications of MTPA (Mosher) amides of secondary amines: assignment of absolute configuration in chiral cyclic amines. J. Org. Chem. 61, 8489–8495 (1996).

    Article  CAS  Google Scholar 

  17. Kolodiazhnyi, O.I., Demchuk, O.M. & Gerschkovich, A.A. Application of the dimenthyl chlorophosphite for the chiral analysis of amines, amino acids and peptides. Tetrahedron Asymmetry 10, 1729–1732 (1999).

    Article  CAS  Google Scholar 

  18. Hulst, R., Zijlstra, R.W.J., de Vries, N.K. & Feringa, B.L. (S)-2H-2-oxo-5,5-dimethyl-4(R)-phenyl-1,3,2-dioxaphosphorinane, a new reagent for the enantiomeric excess determination of unprotected amino acids using 31P NMR. Tetrahedron Asymmetry 5, 1701–1710 (1994).

    Article  CAS  Google Scholar 

  19. Sullivan, G.R., Dale, J.A. & Mosher, H.S. Correlation of configuration and fluorine-19 chemical shifts of alpha-methoxy-alpha-trifluoromethylphenyl acetate derivatives. J. Org. Chem. 38, 2143–2147 (1973).

    Article  CAS  Google Scholar 

  20. Trost, B.M., Bunt, R.C. & Pulley, S.R. On the use of o-methylmandelic acid for the establishment of absolute configuration of alpha-chiral primary amines. J. Org. Chem. 59, 4202–4205 (1994).

    Article  CAS  Google Scholar 

  21. Seco, J.M., Quiñoá, E. & Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev. 104, 17–118 (2004).

    Article  CAS  Google Scholar 

  22. Svatoš, A., Valterová, I., Saman, D. & Vrkoc, J. Direct esterification of 2-methoxy-2-phenyl-3,3,3-trifluoropropionic acid: a reinvestigation. Collect. Czech. Chem. Commun. 55, 485–490 (1990).

    Article  Google Scholar 

  23. Hietaniemi, L., Pohjala, E., Malkonen, P. & Riekkola, M.L. Assay of enantiomeric purities of beta-blockers-complications in the Mosher method. Finn. Chem. Lett. 16, 67–73 (1989).

    CAS  Google Scholar 

  24. Pérez-Fuertes, Y. et al. Simple protocol for NMR analysis of the enantiomeric purity of primary amines. Org. Lett. 8, 609–612 (2006).

    Article  Google Scholar 

  25. Kelly, A.M., Pérez-Fuertes, Y., Arimori, S., Bull, S.D. & James, T.D. Simple protocol for NMR analysis of the enantiomeric purity of diols. Org. Lett. 8, 1971–1974 (2006).

    Article  CAS  Google Scholar 

  26. Axe, P. et al. Enantiopure pseudo-C3-symmetric titanium alkoxide with propeller-like chirality. Org. Lett. 9, 223–226 (2007).

    Article  CAS  Google Scholar 

  27. Taylor, P.J.M. & Bull, S.D. An improved synthesis of deuterated Schöllkopf's bis-lactim ether and its use for the asymmetric synthesis of (R)-[α-2H]-phenylalanine methyl esters. Tetrahedron Asymmetry 17, 1170–1178 (2006).

    Article  CAS  Google Scholar 

  28. James, T.D. Saccharide-selective boronic acid based photoinduced electron transfer (PET) fluorescent sensors. Top. Curr. Chem. 277, 107–152 (2007).

    Article  CAS  Google Scholar 

  29. James, T.D. & Shinkai, S. Artificial receptors as chemosensors for carbohydrates. Top. Curr. Chem. 218, 159–200 (2002).

    Article  CAS  Google Scholar 

  30. Allenmark, S.G. Chromatographic Enantioseparation: Methods and Applications. Ellis Horwood, Chichester, UK, (1988).

    Google Scholar 

  31. Weix, D.J., Dreher, S.D. & Katz, T.J. HELOL phosphite: a helically grooved sensor of remote chirality. J. Am. Chem. Soc. 122, 10027–10032 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the University of Bath, the EPSRC, the Leverhulme Trust and the Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven D Bull or Tony D James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Fuertes, Y., Kelly, A., Fossey, J. et al. Simple protocols for NMR analysis of the enantiomeric purity of chiral primary amines. Nat Protoc 3, 210–214 (2008). https://doi.org/10.1038/nprot.2007.524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.524

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing