Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Efficient transfection of DNA or shRNA vectors into neurons using magnetofection

Abstract

Efficient and long-lasting transfection of primary neurons is an essential tool for addressing many questions in current neuroscience using functional gene analysis. Neurons are sensitive to cytotoxicity and difficult to transfect with most methods. We provide a protocol for transfection of cDNA and RNA interference (short hairpin RNA (shRNA)) vectors, using magnetofection, into rat hippocampal neurons (embryonic day 18/19) cultured for several hours to 21 d in vitro. This protocol even allows double-transfection of DNA into a small subpopulation of hippocampal neurons (GABAergic interneurons), as well as achieving long-lasting expression of DNA and shRNA constructs without interfering with neuronal differentiation. This protocol, which uses inexpensive equipment and reagents, takes 1 h; utilizes mixed hippocampal cultures, a transfection reagent, CombiMag, and a magnetic plate; shows low toxicity and is suited for single-cell analysis. Modifications done by our three laboratories are detailed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of EGFP in neuronal cultures (Method C).
Figure 2: Demonstration of the efficiency of magnetofection using an EGFP construct and neurons cultured according to Method A.
Figure 3: Expression of PICK1 and α7 nAChR by magnetofection in cultured hippocampal GABAergic interneurons and pyramidal cells (Method A).
Figure 4: GFP and GFP-gephyrin expression in young and mature neurons (method B).
Figure 5: Knockdown of SynGAP expression using specific RNAi (Method C).

Similar content being viewed by others

References

  1. Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe, S.Y. et al. Calcium phosphate-mediated transfection of primary cultured brain neurons using GFP expression as a marker: application for single neuron electrophysiology. Neurosci. Res. 33, 71–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, J.B. et al. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control. Rel. 114, 110–117 (2006).

    Article  CAS  Google Scholar 

  4. Tonges, L. et al. Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12, 1431–1438 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goetze, B., Grunewald, B., Baldassa, S. & Kiebler, M. Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J. Neurobiol. 60, 517–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zeitelhofer, M. et al. High-efficiency transfection of mammalian neurons via nucleofection. Nat. Protoc. 2, 1692–1704 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Plank, C. et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Chudotvorova, I. et al. Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. J. Physiol. 566, 671–679 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lardi-Studler, B. et al. Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J. Cell Sci. 120, 1371–1382 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Baer, K. et al. PICK1 interacts with alpha7 neuronal nicotinic acetylcholine receptors and controls their clustering. Mol. Cell Neurosci. 35, 339–355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sassoe-Pognetto, M. & Fritschy, J.M. Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses. Eur. J. Neurosci. 12, 2205–2210 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J.H., Liao, D., Lau, L.F. & Huganir, R.L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, H.J., Rojas-Soto, M., Oguni, A. & Kennedy, M.B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Paradis, S. et al. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53, 217–232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brunig, I., Scotti, E., Sidler, C. & Fritschy, J.M. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J. Comp. Neurol. 443, 43–55 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Brunig, I., Suter, A., Knuesel, I., Luscher, B. & Fritschy, J.M. GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J. Neurosci. 22, 4805–4813 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia, Z., Dudek, H., Miranti, C.K. & Greenberg, M.E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacquier, A. et al. Alsin/Rac1 signaling controls survival and growth of spinal motoneurons. Ann. Neurol. 60, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kawai, H., Zago, W. & Berg, D.K. Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J. Neurosci. 22, 7903–7912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terashima, A. et al. Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J. Neurosci. 24, 5381–5390 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, M.J., Dunah, A.W., Wang, Y.T. & Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras–ERK signaling and AMPA receptor trafficking. Neuron 46, 745–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Schrader, N. et al. Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin. J. Biol. Chem. 279, 18733–18741 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Xia, J., Zhang, X., Staudinger, J. & Huganir, R.L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Grigory Krapivinsky (Harvard Medical School, Boston) for help with preparing of shRNA coding vector. We are grateful to Corinne Sidler, Susanne Erb-Vögtli and Dubravka Göckeritz-Dujmovic (University of Zürich) for excellent technical assistance. This study was supported by grants from the Swiss National Science Foundation (to C.F. and J.-M.F.), the Swiss Foundation for Research on Muscle Diseases (to C.F.), INSERM (to C.P. and I.M.) and the French Foundation for Medical Research (to I.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Medina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buerli, T., Pellegrino, C., Baer, K. et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat Protoc 2, 3090–3101 (2007). https://doi.org/10.1038/nprot.2007.445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.445

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing