Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Qualitative PCR–ELISA protocol for the detection and typing of viral genomes

Abstract

PCR is an established technique providing rapid and highly productive amplification of specific DNA sequences. The demand for equally rapid, sensitive and objective methods to achieve detection of PCR products has led to the coupling of PCR with ELISA. PCR–ELISA involves direct incorporation of labeled nucleotides in amplicons during PCR-amplification, their hybridization to specific probes and hybrid capture-immunoassay in microtiter wells. PCR–ELISA is performed in 1 d and is very flexible, with the ability to process simultaneously up to 96 or 384 samples. This technique is potentially automatable and does not require expensive equipment, and thus can be fundamental in laboratories without access to a real-time PCR thermocycler. PCR–ELISA has mainly been used to detect infectious agents, including viruses, bacteria, protozoa and fungi. A PCR–ELISA protocol for the qualitative detection of papillomavirus genomes and simultaneous typing of different genotypes are detailed here as an example of the technique.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme of PCR–ELISA.
Figure 2: PCR–ELISA microtiter plate.

References

  1. Landgraf, A., Reckmann, B. & Pingoud, A. Direct analysis of polymerase chain reaction products using enzyme-linked immunosorbent assay techniques. Anal. Biochem. 198, 86–91 (1991).

    CAS  Article  PubMed  Google Scholar 

  2. Gibellini, D. et al. Microplate capture hybridization of amplified parvovirus B19 DNA fragment labelled with digoxigenin. Mol. Cell. Probes 7, 453–458 (1993).

    CAS  Article  PubMed  Google Scholar 

  3. Zerbini, M. et al. Automated detection of digoxigenin-labelled B19 parvovirus amplicons by a capture hybridization assay. J. Virol. Methods 55, 1–9 (1995).

    CAS  Article  PubMed  Google Scholar 

  4. Venturoli, S. et al. Detection of adeno-associated virus DNA in female genital samples by PCR-ELISA. J. Med. Virol. 64, 577–582 (2001).

    CAS  Article  PubMed  Google Scholar 

  5. Venturoli, S. et al. Human papillomavirus DNA testing by PCR-ELISA and hybrid capture II from a single cytological specimen: concordance and correlation with cytological results. J. Clin. Virol. 25, 177–185 (2002).

    CAS  Article  PubMed  Google Scholar 

  6. Koskiniemi, M., Mannonen, L., Kallio, A. & Vaheri, A. Luminometric microplate hybridization for detection of varicella-zoster virus PCR product from cerebrospinal fluid. J. Virol. Methods 63, 71–79 (1997).

    CAS  Article  PubMed  Google Scholar 

  7. Roda, A. et al. Microtiter format for simultaneous multianalyte detection and development of a PCR-chemiluminescent enzyme immunoassay for typing human papillomavirus DNAs. Clin. Chem. 48, 1654–1660 (2002).

    CAS  PubMed  Google Scholar 

  8. Ambretti, S. et al. High-throughput polymerase chain reaction chemiluminescent enzyme immunoassay for typing and quantifying human papillomavirus DNAs. Anal. Biochem. 332, 349–357 (2004).

    CAS  Article  PubMed  Google Scholar 

  9. Watzinger, F., Ebner, K. & Lion, T. Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med. 27, 254–298 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Kim, J.W. et al. Development of PCR-ELISA for the detection of hepatitis B virus x gene expression and clinical application. J. Clin. Lab. Anal. 19, 139–145 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Metzger-Boddien, C. & Kehle, J. Development and evaluation of a sensitive PCR-ELISA for detection of adenoviruses in feces. Intervirology 48, 297–300 (2005).

    CAS  Article  PubMed  Google Scholar 

  12. Adler, M., Schulz, S., Fischer, R. & Niemeyer, C.M. Detection of rotavirus from stool samples using a standardized immuno-PCR (“Imperacer”) method with end-point and real-time detection. Biochem. Biophys. Res. Commun. 333, 1289–1294 (2005).

    CAS  Article  PubMed  Google Scholar 

  13. Metzger-Boddien, C. et al. Automated high-throughput immunomagnetic separation-PCR for detection of Mycobacterium avium subsp. paratuberculosis in bovine milk. Int. J. Food Microbiol. 110, 201–208 (2006).

    CAS  Article  PubMed  Google Scholar 

  14. Daeschlein, G., Assadian, O., Daxboeck, F. & Kramer, A. Multiplex PCR-ELISA for direct detection of MRSA in nasal swabs advantageous for rapid identification of non-MRSA carriers. Eur. J. Clin. Microbiol. Infect. Dis. 25, 328–330 (2006).

    CAS  Article  PubMed  Google Scholar 

  15. Perelle, S. et al. Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Mol. Cell. Probes. 18, 409–420 (2004).

    CAS  Article  PubMed  Google Scholar 

  16. Kurupati, P., Kumarasinghe, G. & Laa Poh, C. Direct identification of Pseudomonas aeruginosa from blood culture bottles by PCR-enzyme linked immunosorbent assay using oprI gene specific primers. Mol. Cell. Probes 19, 417–421 (2005).

    CAS  Article  PubMed  Google Scholar 

  17. Waters, S.M., Doyle, S., Murphy, R.A. & Power, R.F. Development of solution phase hybridisation PCR-ELISA for the detection and quantification of Enterococcus faecalis and Pediococcus pentosaceus in Nurmi-type cultures. J. Microbiol. Methods 63, 264–275 (2005).

    CAS  Article  PubMed  Google Scholar 

  18. Martín-Sánchez, J., Gállego, M., Barón, S., Castillejo, S. & Morillas-Marquez, F. Pool screen PCR for estimating the prevalence of Leishmania infantum infection in sandflies (Diptera: Nematocera, Phlebotomidae). Trans. R. Soc. Trop. Med. Hyg. 100, 527–532 (2006).

    Article  PubMed  Google Scholar 

  19. Heidari, A. et al. Genotypes and in vivo resistance of Plasmodium falciparum isolates in an endemic region of Iran. Parasitol. Res. 100, 589–592 (2007).

    Article  PubMed  Google Scholar 

  20. Sow, A., Sidibe, I., Desquesnes, M., Bengaly, Z. & Panqui, L.J. The application of PCR-ELISA to the detection of Trypanosoma congolense type savannah (TCS) in bovine blood samples. Trop. Biomed. 23, 123–129 (2006).

    CAS  PubMed  Google Scholar 

  21. Hassan, M. et al. Detection of DNA of W. bancrofti in blood samples by QC-PCR-ELISA-based. J. Egypt Soc. Parasitol. 35, 963–970 (2005).

    PubMed  Google Scholar 

  22. Florent, M. et al. Prospective evaluation of a polymerase chain reaction-ELISA targeted to Aspergillus fumigatus and Aspergillus flavus for the early diagnosis of invasive aspergillosis in patients with hematological malignancies. J. Infect. Dis. 193, 741–747 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U. & zur Hausen, H. Classification of papillomaviruses. Virology 324, 17–27 (2004).

    CAS  Article  PubMed  Google Scholar 

  24. Clifford, G.M., Smith, J.S., Plummer, M., Muñoz, N. & Franceschi, S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br. J. Cancer 88, 63–73 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Lungu, O., Wright, T.C. Jr. & Silverstein, S. Typing of human papillomaviruses by polymerase chain reaction amplification with L1 consensus primers and RFLP analysis. Mol. Cell. Probes 6, 145–152 (1992).

    CAS  Article  PubMed  Google Scholar 

  26. Kay, P., Meehan, K. & Williamson, A.L. The use of nested polymerase chain reaction and restriction fragment length polymorphism for the detection and typing of mucosal human papillomaviruses in samples containing low copy numbers of viral DNA. J. Virol. Methods 105, 159–170 (2002).

    CAS  Article  PubMed  Google Scholar 

  27. Feoli-Fonseca, J.C. et al. Human papillomavirus (HPV) study of 691 pathological specimens from Quebec by PCR-direct sequencing approach. J. Med. Virol. 63, 284–292 (2001).

    CAS  Article  PubMed  Google Scholar 

  28. Speich, N., Schmitt, C., Bollmann, R. & Bollmann, M. Human papillomavirus (HPV) study of 2916 cytological samples by PCR and DNA sequencing: genotype spectrum of patients from the west German area. J. Med. Microbiol. 53, 125–128 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. van den Brule, A.J. et al. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J. Clin. Microbiol. 40, 779–787 (2002).

    CAS  Article  PubMed  Google Scholar 

  30. de Roda Husman, A.M., Walboomers, J.M., van den Brule, A.J., Meijer, C.J. & Snijders, P.J. The use of general primers GP5 and GP6 elongated at their 3 ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J. Gen. Virol. 76, 1057–1062 (1995).

    CAS  Article  PubMed  Google Scholar 

  31. Manos, M.M. et al. Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7, 209–214 (1989).

    CAS  Google Scholar 

  32. Gravitt, P.E. et al. Improved amplification of genital human papillomaviruses. J. Clin. Microbiol. 38, 357–361 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kleter, B. et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J. Clin. Microbiol. 37, 2508–2517 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Resnick, R.M. et al. Detection and typing of human papillomavirus in archival cervical cancer specimens by DNA amplification with consensus primers. J. Natl. Cancer Inst. 82, 1477–1484 (1990).

    CAS  Article  PubMed  Google Scholar 

  35. Venturoli, S. et al. Evaluation of immunoassays for the detection and typing of PCR amplified human papillomavirus DNA. J. Clin. Pathol. 51, 143–148 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Zerbini, M. et al. Distribution and viral load of type specific HPVs in different cervical lesions as detected by PCR-ELISA. J. Clin. Pathol. 54, 377–380 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Schneede, P. et al. Evaluation of HPV testing by Hybrid Capture II for routine gynaecologic screening. Acta Obstet. Gynecol. Scand. 80, 750–752 (2001).

    CAS  Article  PubMed  Google Scholar 

  38. Söderlund-Strand, A., Rymark, P., Andersson, P., Dillner, J. & Dillner, L. Comparison between the Hybrid Capture II test and a PCR-based human papillomavirus detection method for diagnosis and posttreatment follow-up of cervical intraepithelial neoplasia. J. Clin. Microbiol. 43, 3260–3266 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ehardt, A., Schaefer, S., Athanassiou, N., Kann, M. & Gerlich, W.H. Quantitative assay of PCR-amplified hepatitis B virus DNA using a peroxidase-labelled DNA probe and enhanced chemiluminescence. J. Clin. Microbiol. 34, 1885–1891 (1996).

    Google Scholar 

  40. Laitinen, R., Malinen, E. & Palva, A. PCR-ELISA I: Application to simultaneous analysis of mixed bacterial samples composed of intestinal species. Syst. Appl. Microbiol. 25, 241–248 (2002).

    CAS  PubMed  Google Scholar 

  41. Swets, J.A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    CAS  Article  PubMed  Google Scholar 

  42. Moret, H. et al. New commercially available PCR and microplate hybridization assay for detection and differentiation of human polyomaviruses JC and BK in cerebrospinal fluid, serum, and urine samples. J. Clin. Microbiol. 44, 1305–1309 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Bonvicini, F. et al. Presence and type of oncogenic human papillomavirus in classic and in differentiated vulvar intraepithelial neoplasia and keratinizing vulvar squamous cell carcinoma. J. Med. Virol. 77, 102–106 (2005).

    CAS  Article  PubMed  Google Scholar 

  44. La Placa, M. et al. Presence of high-risk mucosal human papillomavirus genotypes in primary melanoma and in acquired dysplastic melanocytic naevi. Br. J. Dermatol. 152, 909–914 (2005).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Musiani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Musiani, M., Venturoli, S., Gallinella, G. et al. Qualitative PCR–ELISA protocol for the detection and typing of viral genomes. Nat Protoc 2, 2502–2510 (2007). https://doi.org/10.1038/nprot.2007.311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.311

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing