Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and use of metal surface-immobilized DNA hairpins for the detection of oligonucleotides

Abstract

The following protocol describes the experimental steps used to prepare arrayable and label-free biological sensors that are based on the fluorescence unquenching of DNA hairpins immobilized on metal surfaces. This two-part protocol describes both the creation of gold-coated substrates and the oligonucleotide surface self-assembly process that transforms the substrates into reporters for detecting DNA. Using this procedure, one can create sensors for oligonucleotides that are highly sensitive and have demonstrated an exceptional specificity to single nucleotide polymorphisms. From start to finish, the entire procedure can be accomplished in 24–30 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6: Signal produced by immobilized DHP1 when treated with 2.5 μM target as a function of time and temperature.
Figure 7: CCD images pre- and post-hybridization.
Figure 8

Similar content being viewed by others

References

  1. Yoo, S.M. et al. Development of DNA microarray for pathogen detection. Biotech. Bioprocess Eng. 2004; 9, 93–99.

    Article  CAS  Google Scholar 

  2. Gracey, A.Y. & Cossins, A.R. Application of microarray technology in environmental and comparative physiology. Annu. Rev. Physiol. 2003; 65, 231–259.

    Article  CAS  PubMed  Google Scholar 

  3. Guo, Q.M. DNA microarray and cancer. Curr. Opin. Oncol. 2003; 15, 36–43.

    Article  CAS  PubMed  Google Scholar 

  4. Fan, J. et al. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Natl. Acad. Sci. USA 2002; 99, 10611–10616.

    Article  CAS  PubMed  Google Scholar 

  5. Fang, Y., Frutos, A.G. & Lahiri, J. Ganglioside microarrays for toxin detection. Langmuir 2003; 19, 1500–1505.

    Article  CAS  Google Scholar 

  6. Schäfering, M., Kruschina, M., Meerkamp, M., Ortigao, F. & Kambhmpati, D. Smart sensor architectures: importance of micro-array sensor surface in conducting high quality functional genomic analysis. PharmaGenomics, 2002; Sept/Oct, 36–44.

  7. Pirrung, M.C. How to make a DNA chip. Agnew. Chem. Int. Ed. 2002; 41, 1276–1289.

    Article  CAS  Google Scholar 

  8. Donovan, D.M. & Becker, K.G. Double round hybridization of membrane based cDNA arrays: improved background reduction and data replication. J. Neurosci. Methods 2002; 118, 59–62.

    Article  CAS  PubMed  Google Scholar 

  9. Sawiris, G.P. et al. Development of a highly specialized cDNA array for the study and diagnosis of epithelial ovarian cancer. Cancer Res. 2002; 62, 2923–2928.

    CAS  PubMed  Google Scholar 

  10. Vainrub, A. & Pettitt, B.M. Sensitive quantitative nucleic acid detection using oligonucleotide microarrays. J. Am. Chem. Soc. 2003; 125, 7798–7799.

    Article  CAS  PubMed  Google Scholar 

  11. Steemers, F.J., Ferguson, J.A. & Walt, D.R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat. Biotechnol. 2000; 18, 91–94.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, X. & Tan, W.A. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Anal. Chem. 1999; 71, 5054–5059.

    Article  CAS  PubMed  Google Scholar 

  13. Piestert, O. et al. A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer. Nano Lett. 2003; 3, 979–982.

    Article  CAS  Google Scholar 

  14. Fang, X., Lu, X., Schuster, S. & Tan, W. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J. Am. Chem. Soc. 1999; 121, 2921–2922.

    Article  CAS  Google Scholar 

  15. Du, H., Disney, M.D., Miller, B.L. & Krauss, T.D. Hybridization-based unquenching of DNA hairpins on Au surfaces: prototypical 'molecular beacon' biosensors. J. Am. Chem. Soc. 2003; 125, 4012–4013.

    Article  CAS  PubMed  Google Scholar 

  16. Du, H., Strohsahl, C.M., Camera, J., Miller, B.L. & Krauss, T.D. Sensitivity and specificity of metal surface-immobilized 'molecular beacon' biosensors. J. Am. Chem. Soc. 2005; 127, 7932–7940.

    Article  CAS  PubMed  Google Scholar 

  17. Strohsahl, C.M., Du, H., Miller, B.L. & Krauss, T.D. Towards single-spot, multianalyte molecular beacon biosensors. Talanta 2005; 67, 479–485.

    Article  CAS  PubMed  Google Scholar 

  18. Strohsahl, C.M., Miller, B.L. & Krauss, T.D. Identification of high-stringency DNA hairpin probes by partial gene folding. Biosensors Bioelectron. (in the press).

  19. Fan, C., Plaxco, K.W. & Heeger, A.J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 2003; 100, 9134–9137.

    Article  CAS  PubMed  Google Scholar 

  20. Lakowicz, J.R. Quenching of fluorescence. in Principles of Fluorescence Spectroscopy 3rd edn. (ed. Lakowicz, J.R.) 278–330 (Springer Science+Business Media, NY).

  21. Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. & Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998; 120, 1959–1964.

    Article  CAS  Google Scholar 

  22. He, L. et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J. Am. Chem. Soc. 2000; 122, 9071–9077.

    Article  CAS  Google Scholar 

  23. Dubertret, B., Calame, M. & Libchaber, A.J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 2001; 19, 365–370.

    Article  CAS  PubMed  Google Scholar 

  24. Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 1996; 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M Strohsahl.

Ethics declarations

Competing interests

The authors are the cofounders of Lighthouse Biosciences, LLC, a company based in Rochester, NY, that is commercializing this technology for medical diagnostics and homeland security applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohsahl, C., Miller, B. & Krauss, T. Preparation and use of metal surface-immobilized DNA hairpins for the detection of oligonucleotides. Nat Protoc 2, 2105–2110 (2007). https://doi.org/10.1038/nprot.2007.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.301

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing