Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo

Abstract

It has long been known that cells can be induced to migrate by the application of small d.c. electric fields (EFs), a phenomenon referred to as galvanotaxis. We recently reported some significant effects of electric signals of physiological strength in guiding cell migration and wound healing. We present here protocols to apply an EF to cells or tissues cultured in an electrotactic chamber. The chamber can be built to allow controlled medium flow to prevent the potential development of chemical gradients generated by the EFs. It can accommodate cells on planar culture or tissues in 3D gels. Mounted on an inverted microscope, this setup allows close and well-controlled observation of cellular responses to electric signals. As similar EFs are widely present during development and wound healing, this experimental system can be used to simulate and study cellular and molecular responses to electric signals in these events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrotactic chamber.
Figure 2: Electrotactic chamber assembly on the microscope stage.
Figure 3: Stable pH is maintained in various conditions for approximately 4 h in an electric field (EF) and much longer in CO2-independent medium.
Figure 4: Stable temperature is maintained in various conditions during electric field (EF) treatment.
Figure 5: Stable calcium level is maintained in various conditions during electric field (EF) treatment.
Figure 6: Schematic drawings illustrate the patterns of current flow resulting from applied fields in complex 3D tissues.
Figure 7: Directional angiogenesis was controlled by a small applied electric field (EF) in the 3D electrotactic chamber.
Figure 8: Pharmacological modulation of endogenous wound electric field (EF).
Figure 9: Schematic drawing illustrating the cross-action between endogenous electric field (EF) and applied EF.

Similar content being viewed by others

References

  1. DuBois-Reymond, E. Vorläufiger Abriss einer Untersuchung uber den sogenannten Froschstrom und die electomotorischen Fische. Ann. Phy. U. Chem. 58, 1–30 (1843).

    Google Scholar 

  2. Chiang, M.C., Cragoe, E.J. Jr. & Vanable, J.W. Jr. Intrinsic electric fields promote epithelization of wounds in the newt, Notophthalmus viridescens . Dev. Biol. 146, 377–385 (1991).

    Article  CAS  Google Scholar 

  3. Barker, A.T., Jaffe, L.F. & Vanable, J.W. Jr. The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 242, R358–R366 (1982).

    CAS  PubMed  Google Scholar 

  4. Borgens, R.B., Vanable, J.W. Jr. & Jaffe, L.F. Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 74, 4528–4532 (1977).

    Article  CAS  Google Scholar 

  5. Jaffe, L.F. & Vanable, J.W. Jr. Electric fields and wound healing. Clin. Dermatol. 2, 34–44 (1984).

    Article  CAS  Google Scholar 

  6. Reid, B., Song, B., McCaig, C.D. & Zhao, M. Wound healing in rat cornea: the role of electric currents. FASEB J. 19, 379–386 (2005).

    Article  CAS  Google Scholar 

  7. Chiang, M., Robinson, K.R. & Vanable, J.W. Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp. Eye Res. 54, 999–1003 (1992).

    Article  CAS  Google Scholar 

  8. Kloth, L.C. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int. J. Low Extrem. Wounds 4, 23–44 (2005).

    Article  Google Scholar 

  9. Nuccitelli, R. Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosimetry 106, 375–383 (2003).

    Article  CAS  Google Scholar 

  10. Nuccitelli, R. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58, 1–26 (2003).

    Article  Google Scholar 

  11. Robinson, K.R. & Messerli, M.A. Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25, 759–766 (2003).

    Article  Google Scholar 

  12. Sta Iglesia, D.D., Cragoe, E.J. Jr. & Vanable, J.W. Jr. Electric field strength and epithelization in the newt (Notophthalmus viridescens). J. Exp. Zool. 274, 56–62 (1996).

    Article  CAS  Google Scholar 

  13. Sta Iglesia, D.D. & Vanable, J.W. Jr. Endogenous lateral electric fields around bovine corneal lesions are necessary for and can enhance normal rates of wound healing. Wound Repair Regen. 6, 531–542 (1998).

    Article  CAS  Google Scholar 

  14. McCaig, C.D., Rajnicek, A.M., Song, B. & Zhao, M. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005).

    Article  Google Scholar 

  15. Foulds, I.S. & Barker, A.T. Human skin battery potentials and their possible role in wound healing. Br. J. Dermatol. 109, 515–522 (1983).

    Article  CAS  Google Scholar 

  16. Hotary, K.B. & Robinson, K.R. Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev. Biol. 166, 789–800 (1994).

    Article  CAS  Google Scholar 

  17. Jaffe, L.F. & Stern, C.D. Strong electrical currents leave the primitive streak of chick embryos. Science 206, 569–571 (1979).

    Article  CAS  Google Scholar 

  18. Shi, R. & Borgens, R.B. Embryonic neuroepithelial sodium transport, the resulting physiological potential, and cranial development. Dev. Biol. 165, 105–116 (1994).

    Article  CAS  Google Scholar 

  19. Shi, R. & Borgens, R.B. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202, 101–114 (1995).

    Article  CAS  Google Scholar 

  20. Levin, M., Thorlin, T., Robinson, K.R., Nogi, T. & Mercola, M. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111, 77–89 (2002).

    Article  CAS  Google Scholar 

  21. Hotary, K.B. & Robinson, K.R. Evidence of a role for endogenous electrical fields in chick embryo development. Development 114, 985–996 (1992).

    CAS  PubMed  Google Scholar 

  22. Borgens, R.B., Jaffe, L.F. & Cohen, M.J. Large and persistent electrical currents enter the transected lamprey spinal cord. Proc. Natl. Acad. Sci. USA 77, 1209–1213 (1980).

    Article  CAS  Google Scholar 

  23. Borgens, R.B., Roederer, E. & Cohen, M.J. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213, 611–617 (1981).

    Article  CAS  Google Scholar 

  24. Borgens, R.B., Blight, A.R. & McGinnis, M.E. Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238, 366–369 (1987).

    Article  CAS  Google Scholar 

  25. Shapiro, S. et al. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J. Neurosurg. Spine 2, 3–10 (2005).

    Article  Google Scholar 

  26. McCaig, C.D. & Zhao, M. Physiological electrical fields modify cell behaviour. Bioessays 19, 819–826 (1997).

    Article  CAS  Google Scholar 

  27. Mycielska, M.E. & Djamgoz, M.B. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117, 1631–1639 (2004).

    Article  CAS  Google Scholar 

  28. Erickson, C.A. & Nuccitelli, R. Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J. Cell Biol. 98, 296–307 (1984).

    Article  CAS  Google Scholar 

  29. Hinkle, L., McCaig, C.D. & Robinson, K.R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 314, 121–135 (1981).

    Article  CAS  Google Scholar 

  30. McCaig, C.D., Rajnicek, A.M., Song, B. & Zhao, M. Has electrical growth cone guidance found its potential? Trends Neurosci. 25, 354–359 (2002).

    Article  CAS  Google Scholar 

  31. Nishimura, K.Y., Isseroff, R.R. & Nuccitelli, R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109, 199–207 (1996).

    CAS  PubMed  Google Scholar 

  32. Pullar, C.E. et al. β4 Integrin and EGF coordinately regulate electric field-mediated directional migration via Rac1. Mol. Biol. Cell 17, 4925–4935 (2006).

    Article  CAS  Google Scholar 

  33. Song, B., Zhao, M., Forrester, J.V. & McCaig, C.D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo . Proc. Natl. Acad. Sci. USA 99, 13577–13582 (2002).

    Article  CAS  Google Scholar 

  34. Zhao, M., Forrester, J.V. & McCaig, C.D. A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. USA 96, 4942–4946 (1999).

    Article  CAS  Google Scholar 

  35. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  Google Scholar 

  36. Vanhaesebroeck, B. Charging the batteries to heal wounds through PI3K. Nat. Chem. Biol. 2, 453–455 (2006).

    Article  CAS  Google Scholar 

  37. Borgens, R.B., Shi, R., Mohr, T.J. & Jaeger, C.B. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128, 41–49 (1994).

    Article  CAS  Google Scholar 

  38. Cho, M.R., Thatte, H.S., Lee, R.C. & Golan, D.E. Induced redistribution of cell surface receptors by alternating current electric fields. FASEB J. 8, 771–776 (1994).

    Article  CAS  Google Scholar 

  39. Cooper, M.S. & Keller, R.E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81, 160–164 (1984).

    Article  CAS  Google Scholar 

  40. Jaffe, L.F. Electrophoresis along cell membranes. Nature 265, 600–602 (1977).

    Article  CAS  Google Scholar 

  41. Patel, N. & Poo, M.M. Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2, 483–496 (1982).

    Article  CAS  Google Scholar 

  42. Poo, M.M. & Robinson, K.R. Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265, 602–605 (1977).

    Article  CAS  Google Scholar 

  43. Poo, M.M., Poo, W.J. & Lam, J.W. Lateral electrophoresis and diffusion of concanavalin A receptors in the membrane of embryonic muscle cell. J. Cell Biol. 76, 483–501 (1978).

    Article  CAS  Google Scholar 

  44. Zhao, M., Agius-Fernandez, A., Forrester, J.V. & McCaig, C.D. Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J. Cell Sci. 109 (Pt 6): 1405–1414 (1996).

    CAS  PubMed  Google Scholar 

  45. Robinson, K.R. Endogenous and applied electrical currents: their measurement and application. in Electric Fields in Vertebrate Repair (ed. Alan R. Liss) 1–25 (John Wiley & Sons, 1989).

    Google Scholar 

  46. Zhao, M., Jin, T., McCaig, C.D., Forrester, J.V. & Devreotes, P.N. Genetic analysis of the role of G protein-coupled receptor signaling in electrotaxis. J. Cell Biol. 157, 921–927 (2002).

    Article  CAS  Google Scholar 

  47. Eagle, H. Buffer combinations for mammalian cell culture. Science 174, 500–503 (1971).

    Article  CAS  Google Scholar 

  48. Jenkins, L.S., Duerstock, B.S. & Borgens, R.B. Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Dev. Biol. 178, 251–262 (1996).

    Article  CAS  Google Scholar 

  49. Adams, D. & Levin, M. Strategies and techniques for investigation of biophysical signals in patterning. in Analysis of Growth Factor Signaling in Embryos (eds. Whitman, M. & Sater, A.K.) 177–214 (Methods in Signal Transduction Series, CRC Press, 2006).

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, UK. We thank Dr. Vic Small, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Song or Min Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, B., Gu, Y., Pu, J. et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc 2, 1479–1489 (2007). https://doi.org/10.1038/nprot.2007.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.205

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing