Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes


Activity-based protein profiling (ABPP) utilizes active site-directed chemical probes to monitor the functional state of enzymes directly in native biological systems. Identification of the specific sites of probe labeling on enzymes remains a major challenge in ABPP experiments. In this protocol, we describe an advanced ABPP platform that utilizes a tandem orthogonal proteolysis (TOP) strategy coupled with mass spectrometric analysis to simultaneously identify probe-labeled proteins together with their exact sites of probe modification. Elucidation of probe modification sites reveals fundamental insights into the molecular basis of specific probe–protein interactions. The TOP-ABPP method can be applied to any type of proteomic sample, including those derived from in vitro or in vivo labeling experiments, and is compatible with a variety of chemical probe structures. Completion of the entire protocol, including chemical synthesis of key reagents, requires approximately 8–10 days.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The TOP-ABPP method.
Figure 2: Structure of the TEV-biotin tag.
Figure 3
Figure 4


  1. Anderson, N.L. & Anderson, N.G. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853–1861 (1998).

    CAS  Article  Google Scholar 

  2. Mann, M., Hendrickson, R.C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001).

    CAS  Article  Google Scholar 

  3. Kobe, B. & Kemp, B.E. Active site-directed protein regulation. Nature 402, 373–376 (1999).

    CAS  Article  Google Scholar 

  4. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    CAS  Article  Google Scholar 

  5. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    CAS  Article  Google Scholar 

  6. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    CAS  Article  Google Scholar 

  7. Tai, H.C., Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Parallel identification of O-GlcNAc-modified proteins from cell lysates. J. Am. Chem. Soc. 126, 10500–10501 (2004).

    CAS  Article  Google Scholar 

  8. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    CAS  Article  Google Scholar 

  9. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    CAS  Article  Google Scholar 

  10. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. Chembiochem 5, 41–47 (2004).

    CAS  Article  Google Scholar 

  11. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    CAS  Article  Google Scholar 

  12. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    CAS  Article  Google Scholar 

  13. Patricelli, M.P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    CAS  Article  Google Scholar 

  14. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805–809 (2002).

    CAS  Article  Google Scholar 

  15. Barglow, K.T. & Cravatt, B.F. Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523–31 (2004).

    CAS  Article  Google Scholar 

  16. Evans, M.J., Saghatelian, A., Sorensen, E.J. & Cravatt, B.F. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23, 1303–1307 (2005).

    CAS  Article  Google Scholar 

  17. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    CAS  Article  Google Scholar 

  18. Speers, A.E. & Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    CAS  Article  Google Scholar 

  19. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    CAS  Article  Google Scholar 

  20. Speers, A.E. & Cravatt, B.F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    CAS  Article  Google Scholar 

  21. Dougherty, W.G., Cary, S.M. & Parks, T.D. Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171, 356–364 (1989).

    CAS  Article  Google Scholar 

  22. Washburn, M.P., Wolters, D. & Yates, J.R. 3rd Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS  Article  Google Scholar 

  23. Adam, G.C., Burbaum, J., Kozarich, J.W., Patricelli, M.P. & Cravatt, B.F. Mapping enzyme active sites in complex proteomes. J. Am. Chem. Soc. 126, 1363–1368 (2004).

    CAS  Article  Google Scholar 

  24. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    CAS  Article  Google Scholar 

  25. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    CAS  Article  Google Scholar 

  26. Liu, H., Sadygov, R.G. & Yates, J.R. 3rd A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    CAS  Article  Google Scholar 

  27. Old, W.M. et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487–1502 (2005).

    CAS  Article  Google Scholar 

  28. Cooper, H.J., Hakansson, K. & Marshall, A.G. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Benjamin F Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weerapana, E., Speers, A. & Cravatt, B. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat Protoc 2, 1414–1425 (2007).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing