Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen

Abstract

Secreted and cell surface proteins play essential roles in numerous essential biological processes in eukaryotic organisms, but are often more difficult to isolate and identify than proteins that are localized in intracellular compartments. However, several high-throughput 'gene-trap' techniques have been developed to characterize these 'secretomes', including the yeast secretion trap (YST) screen. This method involves fusing cDNA libraries from the tissue or cell type of interest to a yeast (Saccharomyces cerevisiae) invertase reporter gene, transforming the resulting fusion library into an invertase-deficient yeast strain and plating the transformants on a medium containing sucrose as the sole carbon source. A yeast cell with a transgene encoding a secreted or cell surface protein can synthesize a secreted invertase fusion protein that can rescue the mutant, and the plasmid DNA can then be sequenced to identify the gene that encodes it. We describe a recently improved version of this screen, which allows the identification of genes encoding secreted proteins in 1–2 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the basic steps in the yeast secretion trap (YST) system to identify eukaryotic secreted and cell surface proteins.
Figure 2: Schematic diagram of the pYST vector system used for cDNA library construction.

Similar content being viewed by others

References

  1. Diehn, M., Eisen, M.B., Botstein, D. & Brown, P.O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat. Genet. 25, 58–62 (2000).

    Article  CAS  Google Scholar 

  2. Clark, H.F. et al. The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res. 13, 2265–2270 (2003).

    Article  CAS  Google Scholar 

  3. Lee, S.-J., Saravanan, R.S., Damasceno, C.M.B., Yamane, H., Kim, B.-D. & Rose, J.K.C. Digging deeper into the plant cell wall proteome. Plant Physiol. Biochem. 42, 979–988 (2004).

    Article  CAS  Google Scholar 

  4. De Groot, P.W.J., Ram, A.F. & Klis, F.M. Features and functions of covalently linked proteins in fungal cell walls. Fungal Gen. Biol. 42, 657–675 (2005).

    Article  CAS  Google Scholar 

  5. Yin, Q.Y. et al. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls. J. Biol Chem. 280, 20894–20901 (2005).

    Article  CAS  Google Scholar 

  6. Jamet, E., Canut, H., Boudart, G. & Pont-Lezica, R.F. Cell wall proteins: a new insight through proteomics. Trends Plant. Sci. 11, 33–39 (2006).

    Article  CAS  Google Scholar 

  7. von Heijne, G. Signal sequences: the limits of variation. J. Mol. Biol. 184, 99–105 (1985).

    Article  CAS  Google Scholar 

  8. Martoglio, B. & Dobbertein, B. Signal sequences: more than just greasy peptides. Trends Cell Biol. 8, 410–415 (1998).

    Article  CAS  Google Scholar 

  9. Plath, K., Mothes, W., Wilkinson, B.M., Stirling, C.J. & Rapoport, T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998).

    Article  CAS  Google Scholar 

  10. Nielsen, H., Brunak, S. & von Heijne, G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12, 3–9 (1999).

    Article  CAS  Google Scholar 

  11. Ladunga, I. Large-scale predictions of secretory proteins from mammalian genomic and EST sequences. Curr. Opin. Biotechnol. 11, 13–18 (2000).

    Article  CAS  Google Scholar 

  12. Fariselli, P., Finocchiaro, G. & Casadio, R. SPEPlip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics 19, 2498–2499 (2003).

    Article  CAS  Google Scholar 

  13. Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  Google Scholar 

  14. Hiller, K., Grote, A., Scheer, M., Munch, R. & Jahn, D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32, W375–W379 (2004).

    Article  CAS  Google Scholar 

  15. Kall, L., Krogh, A. & Sonnhammer, E.L.L. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036 (2004).

    Article  CAS  Google Scholar 

  16. Small, I., Peeters, N., Legeai, F. & Lurin, C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581–1590 (2004).

    Article  CAS  Google Scholar 

  17. Levine, T. & Rabouille, C. Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr. Opin. Cell Biol. 17, 362–368 (2005).

    Article  CAS  Google Scholar 

  18. Robinson, D.G., Oliviusson, P. & Hinz, G. Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6, 615–625 (2005).

    Article  CAS  Google Scholar 

  19. Nickel, W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607–614 (2005).

    Article  CAS  Google Scholar 

  20. Nombela, C., Gil, C. & Chaffin, W.L. Non-conventional protein secretion in yeast. Trends Microbiol. 14, 15–21 (2006).

    Article  CAS  Google Scholar 

  21. Bendtsen, J.D., Jensen, L.J., Blom, N., von Heijne, G. & Brunak, S. Feature-based prediction of non-classical and leaderless protein secretion. Prot. Eng. Des. Select. 17, 349–356 (2004).

    Article  CAS  Google Scholar 

  22. Tashiro, K. et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603 (1993).

    Article  CAS  Google Scholar 

  23. Imai, T. et al. Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J. Biol. Chem. 271, 21514–21521 (1996).

    Article  CAS  Google Scholar 

  24. Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S.P. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).

    Article  CAS  Google Scholar 

  25. Hoffman, C.S. & Wright, A. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc. Natl. Acad. Sci. USA 82, 5107–5111 (1985).

    Article  CAS  Google Scholar 

  26. Chen, H. & Leder, P. A new signal sequence trap using alkaline phosphatase as a reporter. Nucleic Acids Res. 27, 1219–1222 (1999).

    Article  CAS  Google Scholar 

  27. Kojima, T. & Kitamura, T. A signal sequence trap based on a constitutively active cytokine receptor. Nat. Biotechnol. 17, 487–490 (1999).

    Article  CAS  Google Scholar 

  28. Klein, R.D., Gu, Q., Goddard, A. & Rosenthal, A. Selection for genes encoding secreted proteins and receptors. Proc. Natl. Acad. Sci. USA 93, 7108–7113 (1996).

    Article  CAS  Google Scholar 

  29. Jacobs, K.A. et al. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289–296 (1997).

    Article  CAS  Google Scholar 

  30. Kristoffersen, P., Teichmann, T., Stracke, R. & Palme, K. Signal sequence trap to clone cDNAs encoding secreted or membrane-associated plant proteins. Anal. Biochem. 243, 127–132 (1996).

    Article  CAS  Google Scholar 

  31. Goo, J.H., Park, A.R., Park, W.J. & Park, O.K. Selection of Arabidopsis genes encoding secreted and plasma membrane proteins. Plant Mol. Biol. 41, 415–423 (1999).

    Article  CAS  Google Scholar 

  32. Belanger, K.D., Wyman, A.J., Sudol, M.N., Singla-Pareek, S.L. & Quatrano, R.S. A signal peptide secretion screen in Fucus distichus embryos reveals expression of glucanase, EGF domain-containing, and LRR receptor kinase-like polypeptides during asymmetric cell growth. Planta 217, 931–950 (2003).

    Article  CAS  Google Scholar 

  33. Hugot, K. et al. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes. Plant Physiol. 134, 1–13 (2004).

    Article  Google Scholar 

  34. Yamane, H., Lee, S.-J., Kim, B.-D., Tao, R. & Rose, J.K.C. A coupled yeast signal sequence trap and transient plant expression strategy to identify genes encoding secreted proteins from peach pistils. J. Exp. Bot. 56, 2229–2238 (2005).

    Article  CAS  Google Scholar 

  35. Lee, S.-J., Kelley, B., Damasceno, C.M.B., St. John, B., Kim, B.-S., Kim, B.-D. & Rose, J.K.C. A functional screen to characterize the secretomes of eukaryotic phytopathogens and their hosts in planta. Mol. Plant Microbe Interact. 12, 1368–1377 (2006).

    Article  Google Scholar 

  36. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gietz, R.D. & Woods, R.A. Transformation of yeast by the LiAc/SS carrier DNA/PEG method. Methods Enzymol. 350, 87–96 (2002).

    Article  CAS  Google Scholar 

  38. Hoffman, C.S. & Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 57, 267–272 (1987).

    Article  CAS  Google Scholar 

  39. Akada, R., Murakane, T. & Nishizawa, Y. DNA extraction method for screening yeast clones by PCR. BioTechniques 28, 668–674 (2000).

    Article  CAS  Google Scholar 

  40. Galliciotti, G. et al. Signal-sequence trap in mammalian and yeast cells: a comparison. J. Membr. Biol. 183, 175–182 (2001).

    Article  CAS  Google Scholar 

  41. Heazlewood, J.L., Tonti-Filippini, J., Verboom, R.E. & Millar, A.H. Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis. Plant Physiol. 139, 598–609 (2005).

    Article  CAS  Google Scholar 

  42. Yates, J.R., Gilchrist, A., Howell, K.E. & Bergeron, J.J.M. Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol. 6, 702–714 (2005).

    Article  CAS  Google Scholar 

  43. Perco, P., Rapberger, R., Siehs, C., Lukas, A., Oberbauer, R., Mayer, G. & Mayer, B. Transforming omics data into context: bioinformatics on genomics and proteomics raw data. Electrophoresis 27, 2659–2675 (2006).

    Article  CAS  Google Scholar 

  44. Ausubel, F.M. et al. (eds.) Current Protocols in Molecular Biology (John Wiley & Sons, Hoboken, New Jersey, USA, 2006).

    Google Scholar 

  45. Miller, E.M. & Nickoloff, J.A. Escherichia coli electrotransformation. Methods Mol. Biol. 47, 105–114 (1995).

    CAS  PubMed  Google Scholar 

  46. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1989).

    Google Scholar 

Download references

Acknowledgements

Research in this area was supported by grants from the US National Science Foundation Plant Genome Program (DBI-0606595) and the New York State Office of Science, Technology and Academic Research (NYSTAR). S.-J.L. and B.-D.K. of the Center for Plant Molecular Genetics and Breeding Research were also supported by a grant from KOSEF/MOST. The authors would like to thank O.K. Park (Graduate School of Biotechnology, Korea University, Seoul, Korea) for the generous gift of the yeast strain DBYα2445 and T. Isaacson for careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn K C Rose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Kim, BD. & Rose, J. Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Nat Protoc 1, 2439–2447 (2006). https://doi.org/10.1038/nprot.2006.373

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.373

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing