Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans

Abstract

This protocol describes a procedure for screening small molecules for bioactivity and a genetic approach to target identification using the nematode Caenorhabditis elegans as a model system. Libraries of small molecules are screened in 24-well plates that contain a solid agar substrate. On top of the agar mixture, one small-molecule species is deposited into each well, along with worm food (E. coli), and two third-stage or fourth-stage larval worms using a COPAS (Complex Object Parametric Analyzer and Sorter) Biosort. Three to five days later the plates are screened for phenotype. Images of the wells are acquired and archived using a HiDI 2100 automated imaging system (Elegenics). Up to 2,400 chemicals can be screened per week. To identify the predicted protein target of a bioactive molecule, wild-type worms are mutagenized using ethylmethanesulfonate (EMS). Progeny are screened for individuals resistant to the molecules effects. The candidate mutant target that confers resistance is then identified. Target identification might take months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput small-molecule screen.
Figure 2: Typical images generated by HiDI.
Figure 3: The F1 suppressor screen.

Similar content being viewed by others

References

  1. Stockwell, B.R. Exploring biology with small organic molecules. Nature 432, 846–854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwok, T.C. et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441, 91–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Lackner, M.R. et al. Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors. Cancer Cell 7, 325–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kokel, D., Li, Y., Qin, J. & Xue, D. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nat. Chem. Biol. 2, 338–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Weinshenker, D., Garriga, G. & Thomas, J.H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J. Neurosci. 15, 6975–6985 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sulston, J.E., Schierenberg, E., White, J.G. & Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Sulston, J.E. & Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

  9. Kaletta, T. & Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–398 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Choy, R.K. & Thomas, J.H. Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins. Mol. Cell. 4, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Evason, K., Huang, C., Yamben, I., Covey, D.F. & Kornfeld, K. Anticonvulsant medications extend worm life-span. Science 307, 258–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, A.K., Buckingham, S.D. & Sattelle, D.B. Chemistry-to-gene screens in Caenorhabditis elegans. Nat. Rev. Drug Discov. 4, 321–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Lewis, J.A. & Fleming, J.T. Basic culture methods. in Methods in Cell Biology Vol. 48 C. elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 3–29 (Academic Press, San Diego, CA, 1995).

    Google Scholar 

  14. Lang, P., Yeow, K., Nichols, A. & Scheer, A. Cellular imaging in drug discovery. Nat. Rev. Drug Discov. 5, 343–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rand, J.B. & Johnson, C.D. Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. in Methods in Cell Biology Vol. 48, C. elegans: Modern Biological Analysis of an Organism (eds. Epstein, H. F. & Shakes, D. C.) 187–204 (Academic Press, San Diego, CA, 1995).

    Google Scholar 

  16. Link, E.M., Hardiman, G., Sluder, A.E., Johnson, C.D. & Liu, L.X. Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1, 203–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Driscoll, M., Dean, E., Reilly, E., Bergholz, E. & Chalfie, M. Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity. J. Cell Biol. 109, 2993–3003 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA 93, 12593–12598 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, M., Alfonso, A., Johnson, C.D. & Rand, J.B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis, J.A., Wu, C.H., Levine, J.H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Dent, J.A., Davis, M.W. & Avery, L. avr–15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J. 16, 5867–5879 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dent, J.A., Smith, M.M., Vassilatis, D.K. & Avery, L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 2674–2679 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anderson, P. Mutagenesis. in Methods in Cell Biology Vol. 48 C. elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 31–54 (Academic Press, San Diego, CA, 1995).

    Google Scholar 

  25. Sulston, J.E. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W.) 588–589 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  26. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Edgley, M.L., Baillie, D., Riddle, D.L. & Rose, A.B. in Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 147–184 (Academic Press, San Diego, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

We thank Jonathan Hodgkin suggesting the use of CO2 to anesthetise worms. We thank Simon Alfred and Regina Fraser for sharing unpublished results, and the anonymous reviewers for insightful suggestions. P.M., S.R.C. and P.J.R. are Canadian Research Chairs in plant molecular biology, plant genomics and molecular neurobiology, respectively. This work was supported by an NSERC Industrial Grant to P.M., and a CIHR Grant, Premier's Research Excellence Award and awards from the Canadian Foundation for Innovation and Ontario Innovation Trust to P.J.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J Roy.

Ethics declarations

Competing interests

I hereby declare that I (P.J.R.) have a competing financial interest in the publication of this manuscript in that I own shares and am a scientific advisor in the company (Elegenics Inc.) that made the high-throughput digital imager (HiDI) that is described in the accompanying manuscript. Al Howard and Ed Huston, of Elegenics Inc., also have an obvious competing financial interest in the publication of this manuscript. Karl Johanson is formerly of Elegenics, but is no longer with the company, and Anthony Chan is a sub-contractor for Elegenics but has no competing financial interest. I have included A.H., E.H., K.J., and A.C. as authors on the manuscript because they had substantial intellectual input into the construction of HiDI, which we employ in the described protocol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, A., Kwok, T., Howard, A. et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc 1, 1906–1914 (2006). https://doi.org/10.1038/nprot.2006.283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.283

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing