Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High efficiency germ-line transformation of mosquitoes

Abstract

The ability to manipulate the mosquito genome through germ-line transformation provides us with a powerful tool for investigating gene structure and function. It is also a valuable method for the development of novel approaches to combating the spread of mosquito-vectored diseases. To date, germ-line transformation has been demonstrated in several mosquito species. Transgenes are introduced into pre-blastocyst mosquito embryos using microinjection techniques that take a few hours, and progeny are screened for the presence of a marker gene. The microinjection protocol presented here can be applied to most mosquitoes and contains several improvements over other published methods that increase the survival of injected embryos and, therefore, the number of transformants. Transgenic lines can be established in approximately 1 month using this technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Development and melanization of Anopheles gambiae and Aedes aegypti embryos.
Figure 3: Aedes aegypti embryos lined up for injection.
Figure 4: Schematic of embryo being injected.

Similar content being viewed by others

References

  1. Morris, A.C. in The Molecular Biology of Insect Vectors of Disease (eds. Crampton, J.M., Beard, C.B. & Louis, C.) 423–429 (Chapman & Hall, London, 1997).

    Book  Google Scholar 

  2. Grossman, G.L. et al. Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol. Biol. 10, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Catteruccia, F. et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405, 959–962 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nolan, T., Bower, T.M., Brown, A.E., Crisanti, A. & Catteruccia, F. piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J. Biol. Chem. 277, 8759–8762 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lobo, N.F., Hua-Van, A., Li, X., Nolen, B.M. & Fraser, M.J., Jr. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Mol. Biol. 11, 133–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Coates, C.J., Jasinskiene, N., Miyashiro, L. & James, A.A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perera, O.P., Harrell, II R.A. & Handler, A.M. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol. Biol. 11, 291–297 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Allen, M.L., O'Brochta, D.A., Atkinson, P.W. & Levesque, C.S. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 38, 701–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Fraser, M.J., Ciszczon, T., Elick, T. & Bauser, C. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5, 141–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Jasinskiene, N. et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc. Natl Acad. Sci. USA 95, 3743–3747 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Brochta, D.A. et al. Gene vector and transposable element behavior in mosquitoes. J. Exp. Biol. 206, 3823–3834 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Berghammer, A.J., Klingler, M. & Wimmer, E.A. A universal marker for transgenic insects. Nature 402, 370–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Adelman, Z.N., Jasinskiene, N. & James, A.A. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol. Biochem. Parasitol. 121, 1–10 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Riehle, M.A., Srinivasan, P., Moreira, C.K. & Jacobs-Lorena, M. Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges. J. Exp. Biol. 206, 3809–3816 (2003).

    Article  PubMed  Google Scholar 

  15. Horn, C. & Wimmer, E.A. A versatile vector set for animal transgenesis. Dev. Genes Evol. 210, 630–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Shin, S.W., Kokoza, V.A. & Raikhel, A.S. Transgenesis and reverse genetics of mosquito innate immunity. J. Exp. Biol. 206, 3835–3843 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Franz, A.W. et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl Acad. Sci. USA 103, 4198–4203 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito, J., Ghosh, A., Moreira, L.A., Wimmer, E.A. & Jacobs-Lorena, M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Travanty, E.A. et al. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem. Mol. Biol. 34, 607–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Brown, A.E. & Catteruccia, F. Toward silencing the burden of malaria: progress and prospects for RNAi-based approaches. Biotechniques 40, Suppl: 38–44 (2006).

    Article  Google Scholar 

  21. Sanchez-Vargas, I. et al. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res. 102, 65–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ito, K., Sass, H., Urban, J., Hofbauer, A. & Schneuwly, S. GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system. Cell Tissue Res. 290, 1–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. O'Kane, C. & Gehring, W.J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123–9127 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Catteruccia, F., Benton, J.P. & Crisanti, A. An Anopheles transgenic sexing strain for vector control. Nature Biotechnol. 23, 1414–1417 (2005).

    Article  CAS  Google Scholar 

  25. Marrelli, M.T., Moreira, C.K., Kelly, D., Alphey, L. & Jacobs-Lorena, M. Mosquito transgenesis: what is the fitness cost? Trends Parasitol. 22, 197–202 (2006).

    Article  PubMed  Google Scholar 

  26. Catteruccia, F., Godfray, H.C. & Crisanti, A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299, 1225–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Moreira, L.A., Wang, J., Collins, F.H. & Jacobs-Lorena, M. Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development. Genetics 166, 1337–1341 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhong, D. et al. Dynamics of gene introgression in the African malaria vector Anopheles gambiae. Genetics 172, 2359–2365 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menge, D.M. et al. Fitness consequences of Anopheles gambiae population hybridization. Malar. J. 4, 44 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rasgon, J.L. & Gould, F. Transposable element insertion location bias and the dynamics of gene drive in mosquito populations. Insect Mol. Biol. 14, 493–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Li, J. Simple mathematical models for interacting wild and transgenic mosquito populations. Math. Biosci. 189, 39–59 (2004).

    Article  PubMed  Google Scholar 

  32. Thomas, D.D., Donnelly, C.A., Wood, R.J. & Alphey, L.S. Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474–2476 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular Cloning: A Laboratory Manual 2nd edn. (eds. Ford, N., Nolan, C. & Ferguson, M.) 1.42–1.50 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  34. Munstermann, L.E. in The Molecular Biology of Insect Vectors of Disease (eds. Crampton, J.M., Beard, C.B. & Louis, C.) 13–20 (Chapman & Hall, London, 1997).

    Book  Google Scholar 

  35. Benedict, M.Q. in The Molecular Biology of Insect Vectors of Disease (eds. Crampton, J.M., Beard, C.B. & Louis, C.) 3–12 (Chapman & Hall, London, 1997).

    Book  Google Scholar 

  36. Southern, E. Southern blotting. Nature Protocols 1, 518–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sandi Kennedy for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank H Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, N., Clayton, J., Fraser, M. et al. High efficiency germ-line transformation of mosquitoes. Nat Protoc 1, 1312–1317 (2006). https://doi.org/10.1038/nprot.2006.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.221

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing