Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics

Abstract

Ferroelectricity on the nanoscale has been the subject of much fascination in condensed-matter physics for over half a century. In recent years, multiple reports claiming ferroelectricity in ultrathin ferroelectric films based on the formation of remnant polarization states, local electromechanical hysteresis loops, and pressure-induced switching were made. However, similar phenomena were reported for traditionally non-ferroelectric materials, creating a significant level of uncertainty in the field. Here we show that in nanoscale systems the ferroelectric state is fundamentally inseparable from the electrochemical state of the surface, leading to the emergence of a mixed electrochemical–ferroelectric state. We explore the nature, thermodynamics, and thickness evolution of such states, and demonstrate the experimental pathway to establish its presence. This analysis reconciles multiple prior studies, provides guidelines for studies of ferroelectric materials on the nanoscale, and establishes the design paradigm for new generations of ferroelectric-based devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical effects on ferroelectric phase instability.
Figure 2: Different ferroelectric states in phase diagram.
Figure 3: Effect of polarization and temperature on the MC-FE states at different thicknesses.
Figure 4: PFM measurements for different thickness BTO films.
Figure 5: cKPFM measurements for BTO films of different thickness.

Similar content being viewed by others

References

  1. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  ADS  Google Scholar 

  2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  ADS  Google Scholar 

  3. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  ADS  Google Scholar 

  4. Setter, N. et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  ADS  Google Scholar 

  5. Polking, M. J. et al. Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 11, 700–709 (2012).

    Article  ADS  Google Scholar 

  6. Mathews, S., Ramesh, R., Venkatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997).

    Article  Google Scholar 

  7. Tsymbal, E. Y. & Kohlstedt, H. Applied physics—tunneling across a ferroelectric. Science 313, 181–183 (2006).

    Article  Google Scholar 

  8. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  ADS  Google Scholar 

  9. Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539–3543 (2009).

    Article  ADS  Google Scholar 

  10. Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010).

    Book  Google Scholar 

  11. Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973).

    Article  ADS  Google Scholar 

  12. Watanabe, Y. Theoretical stability of the polarization in a thin semiconducting ferroelectric. Phys. Rev. B 57, 789–804 (1998).

    Article  ADS  Google Scholar 

  13. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Article  ADS  Google Scholar 

  14. Kalinin, S. V. & Bonnell, D. A. Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411 (2001).

    Article  ADS  Google Scholar 

  15. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).

    Article  ADS  Google Scholar 

  16. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  ADS  Google Scholar 

  17. Morozovska, A. N., Eliseev, E. A., Svechnikov, G. S. & Kalinin, S. V. Nanoscale electromechanics of paraelectric materials with mobile charges: size effects and nonlinearity of electromechanical response of SrTiO3 films. Phys. Rev. B 84, 045402 (2011).

    Article  ADS  Google Scholar 

  18. Eliseev, E. A. et al. Conductivity of twin-domain-wall/surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 86, 085416 (2012).

    Article  ADS  Google Scholar 

  19. Tagantsev, A. K., Gerra, G. & Setter, N. Short-range and long-range contributions to the size effect in metal-ferroelectric-metal heterostructures. Phys. Rev. B 77, 174111 (2008).

    Article  ADS  Google Scholar 

  20. Gruverman, A., Auciello, O. & Tokumoto, H. Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101–123 (1998).

    Article  ADS  Google Scholar 

  21. Kalinin, S. V. & Bonnell, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).

    Article  ADS  Google Scholar 

  22. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    Article  ADS  Google Scholar 

  23. Kim, Y. S. et al. Observation of room-temperature ferroelectricity in tetragonal strontium titanate thin films on SrTiO3 (001) substrates. Appl. Phys. Lett. 91, 042908 (2007).

    Article  ADS  Google Scholar 

  24. Jang, H. W. et al. Ferroelectricity in strain-free SrTiO3 thin films. Phys. Rev. Lett. 104, 197601 (2010).

    Article  ADS  Google Scholar 

  25. Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).

    Article  ADS  Google Scholar 

  26. Bark, C. W. et al. Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. Nano Lett. 12, 1765–1771 (2012).

    Article  ADS  Google Scholar 

  27. Deepak, N., Caro, M. A., Keeney, L., Pemble, M. E. & Whatmore, R. W. Interesting evidence for template-induced ferroelectric behavior in ultra-thin titanium dioxide films grown on (110) neodymium gallium oxide substrates. Adv. Funct. Mater. 24, 2844–2851 (2014).

    Article  Google Scholar 

  28. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  ADS  Google Scholar 

  29. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotech. 5, 749–754 (2010).

    Article  ADS  Google Scholar 

  30. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V. & Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011).

    Article  Google Scholar 

  31. Skiadopoulou, S. et al. Comment on “interesting evidence for template-induced ferroelectric behavior in ultra-thin titanium dioxide films grown on (110) neodymium gallium oxide substrates”. Adv. Funct. Mater. 26, 642–646 (2016).

    Article  Google Scholar 

  32. Stephenson, G. B. & Highland, M. J. Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation. Phys. Rev. B 84, 064107 (2011).

    Article  ADS  Google Scholar 

  33. Schmickler, W. Interfacial Electrochemistry (Oxford Univ. Press, 1996).

    Google Scholar 

  34. Morozovska, A. N. et al. Flexocoupling impact on the size effects of piezo- response and conductance in mixed-type ferroelectrics-semiconductors under applied pressure. Phys. Rev. B 94, 174101 (2016).

    Article  ADS  Google Scholar 

  35. Mazet, L. et al. Structural study and ferroelectricity of epitaxial BaTiO3 films on silicon grown by molecular beam epitaxy. J. Appl. Phys. 116, 214102 (2014).

    Article  ADS  Google Scholar 

  36. Jesse, S. et al. Band excitation in scanning probe microscopy: recognition and functional imaging. Annu. Rev. Phys. Chem. 65, 519–536 (2014).

    Article  ADS  Google Scholar 

  37. Rodriguez, B. J., Callahan, C., Kalinin, S. V. & Proksch, R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  ADS  Google Scholar 

  38. Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015).

    Article  Google Scholar 

  39. Balke, N. et al. Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. ACS Nano 8, 10229–10236 (2014).

    Article  Google Scholar 

  40. Kalinin, S. V. & Bonnell, D. A. Contrast mechanism maps for piezoresponse force microscopy. J. Mater. Res. 17, 936–939 (2002).

    Article  ADS  Google Scholar 

  41. Mazet, L., Yang, S. M., Kalinin, S. V., Schamm-Chardon, S. & Dubourdieu, C. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015).

    Article  Google Scholar 

  42. Horcas, I. et al. Wsxm: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Maksymovych (ORNL) and S. Schamm-Chardon (CEMES-CNRS, Toulouse) for their valuable discussion. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Support for S.M.Y. was provided by a DOE Presidential Early Career for Scientists and Engineers. This research was also supported (S.M.Y.) by the Sookmyung Women’s University Research Grants (1-1603-2049). This research was also sponsored by the Division of Materials Sciences and Engineering, BES, US DOE (R.K.V. and S.V.K.). C.D. and L.M. acknowledge support and access to the Center for Nanophase Materials Sciences through the proposal CNMS2014-323. C.D. and L.M. also acknowledge financial support for this research at INL by the LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Contributions

S.V.K. and C.D. conceived the project and directed the research; S.M.Y. designed and performed the SPM experiments; L.M. performed a part of the PFM measurements with S.M.Y.; S.M.Y. analysed and discussed the data with N.B., S. J., R.K.V., C.D. and S.V.K.; A.N.M. and E.A.E. performed thermodynamic calculations. R.K. and Y.C. contributed theoretical calculations. L.M. performed the growth and diffraction characterization of the thin films and analysed the data with C.D.; S.M.Y., A.N.M., and S.V.K. wrote the paper with contributions and feedback from all the authors, mainly R.K.V. and C.D.

Corresponding author

Correspondence to Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Morozovska, A., Kumar, R. et al. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nature Phys 13, 812–818 (2017). https://doi.org/10.1038/nphys4103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing