Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectricity in hafnia controlled via surface electrochemical state

Abstract

Ferroelectricity in binary oxides including hafnia and zirconia has riveted the attention of the scientific community due to the highly unconventional physical mechanisms and the potential for the integration of these materials into semiconductor workflows. Over the last decade, it has been argued that behaviours such as wake-up phenomena and an extreme sensitivity to electrode and processing conditions suggest that ferroelectricity in these materials is strongly influenced by other factors, including electrochemical boundary conditions and strain. Here we argue that the properties of these materials emerge due to the interplay between the bulk competition between ferroelectric and structural instabilities, similar to that in classical antiferroelectrics, coupled with non-local screening mediated by the finite density of states at surfaces and internal interfaces. Via the decoupling of electrochemical and electrostatic controls, realized via environmental and ultra-high vacuum piezoresponse force microscopy, we show that these materials demonstrate a rich spectrum of ferroic behaviours including partial-pressure-induced and temperature-induced transitions between ferroelectric and antiferroelectric behaviours. These behaviours are consistent with an antiferroionic model and suggest strategies for hafnia-based device optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and chemical characterization of HZO.
Fig. 2: BE-PFM ferroelectric poling.
Fig. 3: BEPS hysteresis loops.
Fig. 4: Phenomenological Landau-type modelling.
Fig. 5: Temperature-dependent BEPS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request. Data supporting the theoretical results were visualized in Mathematica 12.2 (https://www.wolfram.com/mathematica) and can be found at the Notebook Archive (https://github.com/SergeiVKalinin/SergeiVKalinin-Hafnia_NatureMaterials2023/blob/main/arxiv_org_abs_HZO-2023_ANM.nb). Source data are provided with this paper.

Code availability

Detailed information related to the codes used in this manuscript is available in the Supplementary Information files or from the corresponding authors upon request.

References

  1. Boscke, T. S. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

    Google Scholar 

  2. Muller, J. et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99, 112901 (2011).

    Google Scholar 

  3. Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    CAS  Google Scholar 

  4. Crawford, J. C. Ferroelectric-piezoelectric random access memory. IEEE Trans. Electron Dev. 18, 951–958 (1971).

    Google Scholar 

  5. Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    CAS  Google Scholar 

  6. Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).

    Google Scholar 

  7. Ito, K. & Tsuchiya, H. Memory modes of ferroelectric field-effect transistors. Solid State Electron. 20, 529–537 (1977).

    CAS  Google Scholar 

  8. Rost, T. A., Lin, H. & Rabson, T. A. Ferroelectric switching of a field-effect transistor with a lithium niobate gate insulator. Appl. Phys. Lett. 59, 3654–3656 (1991).

    CAS  Google Scholar 

  9. Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007).

    CAS  Google Scholar 

  10. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    CAS  Google Scholar 

  11. Ferri, K. et al. Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021).

    CAS  Google Scholar 

  12. Zhu, W. L. et al. Wake-up in Al1–xBxN ferroelectric films. Adv. Electron Mater. 8, 2100931 (2021).

    Google Scholar 

  13. Hayden, J. et al. Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 5, 044412 (2021).

    CAS  Google Scholar 

  14. Yasuoka, S. et al. Effects of deposition conditions on the ferroelectric properties of (Al1–xScx)N thin films. J. Appl. Phys. 128, 114103 (2020).

    CAS  Google Scholar 

  15. Akiyama, M. et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009).

    CAS  Google Scholar 

  16. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Google Scholar 

  17. Mikolajick, T., Schroeder, U. & Park, M. H. Special topic on ferroelectricity in hafnium oxide: materials and devices. Appl Phys. Lett. 118, 180402 (2021).

    CAS  Google Scholar 

  18. Materlik, R., Kunneth, C. & Kersch, A. The origin of ferroelectricity in Hf1–xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).

    Google Scholar 

  19. Huan, T. D., Sharma, V., Rossetti, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, 064111 (2014).

    CAS  Google Scholar 

  20. Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014).

    Google Scholar 

  21. Schenk, T. et al. Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224–20233 (2015).

    CAS  Google Scholar 

  22. Hoffmann, M. et al. Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015).

    Google Scholar 

  23. Zhou, D. Y. et al. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103, 192904 (2013).

    Google Scholar 

  24. Siannas, N. et al. Metastable ferroelectricity driven by depolarization fields in ultrathin Hf0.5Zr0.5O2. Commun. Phys. 5, 178 (2022).

    CAS  Google Scholar 

  25. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

    CAS  Google Scholar 

  26. Batra, R., Huan, T. D., Jones, J. L., Rossetti, G. & Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C 121, 4139–4145 (2017).

    CAS  Google Scholar 

  27. Martin, D. et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric. Adv. Mater. 26, 8198–8202 (2014).

    CAS  Google Scholar 

  28. Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).

  29. Hyuk Park, M. et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Google Scholar 

  30. Ihlefeld, J. F., Jaszewski, S. T. & Fields, S. S. A perspective on ferroelectricity in hafnium oxide: mechanisms and considerations regarding its stability and performance. Appl. Phys. Lett. 121, 240502 (2022).

    CAS  Google Scholar 

  31. Kim, H. J. et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).

    Google Scholar 

  32. Garvie, R. C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238–1243 (1965).

    CAS  Google Scholar 

  33. Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf1−xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).

    Google Scholar 

  34. Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).

    CAS  Google Scholar 

  35. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    CAS  Google Scholar 

  36. Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit ‘ferroelectricity’ on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).

    Google Scholar 

  37. Fong, D. D. et al. Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys. Rev. Lett. 96, 127601 (2006).

    CAS  Google Scholar 

  38. Wang, R. V. et al. Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009).

    CAS  Google Scholar 

  39. Yang, S. M. et al. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 13, 812–818 (2017).

    CAS  Google Scholar 

  40. Morozovska, A. N., Eliseev, E. A., Morozovsky, N. V. & Kalinin, S. V. Ferroionic states in ferroelectric thin films. Phys. Rev. B 95, 195413 (2017).

    Google Scholar 

  41. Fields, S. S. et al. Origin of ferroelectric phase stabilization via the clamping effect in ferroelectric hafnium zirconium oxide thin films. Adv. Electron. Mater. 8, 2200601 (2022).

    CAS  Google Scholar 

  42. Cheng, Y. et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat. Commun. 13, 645 (2022).

    CAS  Google Scholar 

  43. Jesse, S. et al. Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).

    CAS  Google Scholar 

  44. Huey, B. D. et al. The importance of distributed loading and cantilever angle in piezo-force microscopy. J. Electroceram. 13, 287–291 (2004).

    Google Scholar 

  45. Jesse, S., Baddorf, A. P. & Kalinin, S. V. Dynamic behaviour in piezoresponse force microscopy. Nanotechnology 17, 1615–1628 (2006).

    CAS  Google Scholar 

  46. Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).

    Google Scholar 

  47. Kelley, K. P. et al. Oxygen vacancy injection as a pathway to enhancing electromechanical response in ferroelectrics. Adv. Mater. 34, 2106426 (2022).

    CAS  Google Scholar 

  48. Spasojevic, I., Verdaguer, A., Catalan, G. & Domingo, N. Effect of humidity on the writing speed and domain wall dynamics of ferroelectric domains. Adv. Electron. Mater. 8, 2100650 (2022).

    CAS  Google Scholar 

  49. Lomenzo, P. D., Richter, C., Mikolajick, T. & Schroeder, U. Depolarization as driving force in antiferroelectric hafnia and ferroelectric wake-up. ACS Appl. Electron. Mater. 2, 1583–1595 (2020).

    CAS  Google Scholar 

  50. Morozovska, A. N., Eliseev, E. A., Biswas, A., Morozovsky, N. V. & Kalinin, S. V. Effect of surface ionic screening on polarization reversal and phase diagrams in thin antiferroelectric films for information and energy storage. Phys. Rev. Appl. 16, 044053 (2021).

    CAS  Google Scholar 

  51. Doria, S. et al. Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline samarium doped ceria thin films. Appl. Phys. Lett. 103, 171605 (2013).

    Google Scholar 

  52. Kumar, A. et al. Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology 24, 145401 (2013).

    Google Scholar 

Download references

Acknowledgements

This effort (K.P.K., Y.L., S.S.F., S.T.J., T.M., J.F.I., S.C., E.C.D. and S.V.K.) was supported as part of the Center for 3D Ferroelectric Microelectronics (3DFeM), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0021118. The scanning probe microscopy research was performed and partially supported at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences, a US Department of Energy, Office of Science User Facility. S.T.J. acknowledges support from the US National Science Foundation’s Graduate Research Fellowship Program via grant number DGE-1842490. A.N.M. received funding from the National Academy of Sciences of Ukraine (grant N 4.8/23-II, ‘Innovative materials and systems with magnetic and/or electrodipole ordering for the needs of using spintronics and nanoelectronics in strategically important issues of new technology’, fund 1230) and was also supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 778070. Some authors (S.C. and E.C.D.) acknowledge the use of the Materials Characterization Facility at Carnegie Mellon University, supported by MCF-677785.

Author information

Authors and Affiliations

Authors

Contributions

K.P.K. performed and conceived experiments; A.N.M. and E.A.E. performed theoretical calculations; Y.L. performed ambient PFM measurements; S.T.J., S.S.F., T.M. and J.F.I. grew samples and performed bulk characterization; S.C. and E.C.D. performed STEM and analysis; and K.P.K. and S.V.K conceived the project. All authors contributed to discussions and the final manuscript.

Corresponding authors

Correspondence to Kyle P. Kelley or Sergei V. Kalinin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Thomas Mikolajick, Bo Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–3, Discussion and References 1–20.

Source data

Source Data Fig. 1

Raw data for Fig. 1 (all panels).

Source Data Fig. 2

Raw data for Fig. 2 (all panels).

Source Data Fig. 3

Raw data for Fig. 3 (all panels).

Source Data Fig. 5

Raw data for Fig. 5 (all panels).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelley, K.P., Morozovska, A.N., Eliseev, E.A. et al. Ferroelectricity in hafnia controlled via surface electrochemical state. Nat. Mater. 22, 1144–1151 (2023). https://doi.org/10.1038/s41563-023-01619-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01619-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing