Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories

Abstract

Lattice gauge theories are used to describe a wide range of phenomena from quark confinement to quantum materials. At finite fermion density, gauge theories are notoriously hard to analyse due to the fermion sign problem. Here, we investigate the Ising gauge theory in 2 + 1 dimensions, a problem of great interest in condensed matter, and show that it is free of the sign problem at arbitrary fermion density. At generic filling, we find that gauge fluctuations mediate pairing, leading to a transition between a deconfined BCS state and a confined BEC. At half-filling, a π-flux phase is generated spontaneously with emergent Dirac fermions. The deconfined Dirac phase, with a vanishing Fermi surface volume, is a non-trivial example of violation of Luttinger’s theorem due to fractionalization. At strong coupling, we find a single continuous transition between the deconfined Dirac phase and the confined BEC, in contrast to the expected split transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic phase diagram at fixed μ > 0 as a function of h/J and the temperature T for the ‘even’ sector of the gauge theory.
Figure 2: Schematic T = 0 phase diagram at half-filling μ = 0, with a novel, deconfined Dirac semi-metal at large fermion hopping t.
Figure 3: QMC results for confinement and superconductivity as a function of h at J = 1, t = 0.5, μ = 0.3 on L × L lattices at temperature T = 1/β.
Figure 4: The evolution from a deconfined BCS state to a deconfined Dirac phase with increasing t in the weak coupling regime J = 0.3 h = 0.1.
Figure 5: Phase transition from a confined BEC to a deconfined Dirac phase driven by increasing t at μ = 0 with J = 0.1, h = 0.2.
Figure 6: Finite size scaling analysis of the phase transition between a confined BEC/CDW and a deconfined Dirac phase driven by increasing h at μ = 0 with J = −1, t = 1.0.

Similar content being viewed by others

References

  1. Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).

    ADS  MathSciNet  Google Scholar 

  2. Peskin, M. E. Mandelstam-’t Hooft duality in abelian lattice models. Ann. Phys. 113, 122–152 (1978).

    Article  ADS  Google Scholar 

  3. Dasgupta, C. & Halperin, B. I. Phase transition in a lattice model of superconductivity. Phys. Rev. Lett. 47, 1556–1560 (1981).

    Article  ADS  Google Scholar 

  4. Fisher, M. P. A. & Lee, D. H. Correspondence between two-dimensional bosons and a bulk superconductor in a magnetic field. Phys. Rev. B 39, 2756–2759 (1989).

    Article  ADS  Google Scholar 

  5. Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).

    Article  ADS  Google Scholar 

  6. Read, N. & Sachdev, S. Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets. Phys. Rev. B 42, 4568–4589 (1990).

    Article  ADS  Google Scholar 

  7. Affleck, I. & Marston, J. B. Large-n limit of the Heisenberg–Hubbard model: implications for high-Tc superconductors. Phys. Rev. B 37, 3774–3777 (1988).

    Article  ADS  Google Scholar 

  8. Senthil, T. & Fisher, M. P. A. Z2 gauge theory of electron fractionalization in strongly correlated systems. Phys. Rev. B 62, 7850–7881 (2000).

    Article  ADS  Google Scholar 

  9. Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

    Article  ADS  Google Scholar 

  10. Moessner, R., Sondhi, S. L. & Fradkin, E. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B 65, 024504 (2001).

    Article  ADS  Google Scholar 

  11. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  12. Read, N. & Sachdev, S. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773–1776 (1991).

    Article  ADS  Google Scholar 

  13. Jalabert, R. A. & Sachdev, S. Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. Phys. Rev. B 44, 686–690 (1991).

    Article  ADS  Google Scholar 

  14. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. Wegner, F. J. Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys. 12, 2259–2272 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  16. Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).

    Article  ADS  Google Scholar 

  17. Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).

    Article  ADS  Google Scholar 

  18. Kitaev, A. & Laumann, C. Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008 Vol. 89, 101 (2010).

  19. Fradkin, E. & Shenker, S. H. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682–3697 (1979).

    Article  ADS  Google Scholar 

  20. Hermele, M. et al. Stability of u(1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).

    Article  ADS  Google Scholar 

  21. Nogueira, F. S. & Kleinert, H. Quantum electrodynamics in 2 + 1 dimensions, confinement, and the stability of u(1) spin liquids. Phys. Rev. Lett. 95, 176406 (2005).

    Article  ADS  Google Scholar 

  22. Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Ann. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article  ADS  Google Scholar 

  23. Herbut, I. F. Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97, 146401 (2006).

    Article  ADS  Google Scholar 

  24. Sachdev, S., Berg, E., Chatterjee, S. & Schattner, Y. Spin density wave order, topological order, and Fermi surface reconstruction. Phys. Rev. B 94, 115147 (2016).

    Article  ADS  Google Scholar 

  25. Punk, M., Allais, A. & Sachdev, S. Quantum dimer model for the pseudogap metal. Proc. Natl Acad. Sci. USA 112, 9552–9557 (2015).

    Article  ADS  Google Scholar 

  26. Nandkishore, R., Metlitski, M. A. & Senthil, T. Orthogonal metals: the simplest non-Fermi liquids. Phys. Rev. B 86, 045128 (2012).

    Article  ADS  Google Scholar 

  27. Moessner, R., Sondhi, S. L. & Fradkin, E. Short-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theories. Phys. Rev. B 65, 024504 (2001).

    Article  ADS  Google Scholar 

  28. Zhang, S. Pseudospin symmetry and new collective modes of the Hubbard model. Phys. Rev. Lett. 65, 120–122 (1990).

    Article  ADS  Google Scholar 

  29. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer Science & Business Media, 2012).

    Google Scholar 

  30. Wen, X.-G. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press on Demand, 2004).

    Google Scholar 

  31. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

    Article  ADS  Google Scholar 

  32. Lieb, E. H. Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994).

    Article  ADS  Google Scholar 

  33. Koshino, M., Arimura, Y. & Ando, T. Magnetic field screening and mirroring in graphene. Phys. Rev. Lett. 102, 177203 (2009).

    Article  ADS  Google Scholar 

  34. Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Hall transition: an alternative approach and exact results. Phys. Rev. B 50, 7526–7552 (1994).

    Article  ADS  Google Scholar 

  35. Hirsch, J. E. Discrete Hubbard–Stratonovich transformation for fermion lattice models. Phys. Rev. B 28, 4059–4061 (1983).

    Article  ADS  Google Scholar 

  36. Chandrasekharan, S. Fermion bag approach to fermion sign problems. Eur. Phys. J. A 49, 90 (2013).

    ADS  Google Scholar 

  37. Li, Z.-X., Jiang, Y.-F. & Yao, H. Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation. Phys. Rev. B 91, 241117 (2015).

    Article  ADS  Google Scholar 

  38. Wang, L., Liu, Y.-H., Iazzi, M., Troyer, M. & Harcos, G. Split orthogonal group: a guiding principle for sign-problem-free fermionic simulations. Phys. Rev. Lett. 115, 250601 (2015).

    Article  ADS  Google Scholar 

  39. Schattner, Y., Lederer, S., Kivelson, S. A. & Berg, E. Ising nematic quantum critical point in a metal: a Monte Carlo study. Phys. Rev. X 6, 031028 (2016).

    Google Scholar 

  40. Berg, E., Metlitski, M. A. & Sachdev, S. Sign-problem–free quantum Monte Carlo of the onset of antiferromagnetism in metals. Science 338, 1606–1609 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  41. Schattner, Y., Gerlach, M. H., Trebst, S. & Berg, E. Competing orders in a nearly antiferromagnetic metal. Phys. Rev. Lett. 117, 097002 (2016).

    Article  ADS  Google Scholar 

  42. Li, Z.-X., Wang, F., Yao, H. & Lee, D.-H. What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study. Sci. Bull. 61, 925–930 (2016).

    Article  Google Scholar 

  43. Dumitrescu, P. T., Serbyn, M., Scalettar, R. T. & Vishwanath, A. Superconductivity and nematic fluctuations in a model of doped FeSe monolayers: determinant quantum Monte Carlo study. Phys. Rev. B 94, 155127 (2016).

    Article  ADS  Google Scholar 

  44. Assaad, F. F. & Grover, T. Simple fermionic model of deconfined phases and phase transitions. Phys. Rev. X 6, 041049 (2016).

    Google Scholar 

  45. Pordes, R. et al. The Open Science Grid. J. Phys. 78, 012057 (2007).

    Google Scholar 

  46. Sfiligoi, I. et al. 2009 WRI World Congress on Computer Science and Information Engineering Vol. 2, 428–432 (IEEE, 2009).

  47. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  Google Scholar 

  48. Prokof’ev, N. & Svistunov, B. Worm algorithms for classical statistical models. Phys. Rev. Lett. 87, 160601 (2001).

    Article  ADS  Google Scholar 

  49. Scalapino, D. J., White, S. R. & Zhang, S. Insulator, metal, or superconductor: the criteria. Phys. Rev. B 47, 7995–8007 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Sachdev and T. Senthil for discussions. S.G. was supported by the Simons Investigators Program, the California Institute of Quantum Emulation and the Templeton Foundation. M.R. acknowledges support from NSF DMR-1410364 and the hospitality of the Berkeley CMT Group in Fall 2015. A.V. acknowledges support from the Templeton Foundation and a Simons Investigator Award. Part of this work was performed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1066293. This research was done using resources provided by the Open Science Grid45,46, supported by the NSF, and used the Extreme Science and Engineering Discovery Environment47 (XSEDE), supported by NSF grant ACI-1053575.

Author information

Authors and Affiliations

Authors

Contributions

S.G. conceived of and carried out the numerical simulations and data analysis. All authors contributed to the development of the theoretical results and to the writing of the manuscript.

Corresponding author

Correspondence to Snir Gazit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazit, S., Randeria, M. & Vishwanath, A. Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories. Nature Phys 13, 484–490 (2017). https://doi.org/10.1038/nphys4028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys4028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing