Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film

Abstract

Materials containing strong correlation and frustration have the potential to respond to external perturbations in an unusual way. In the case of common water ice, protons in the hydrogen-bond network are strongly correlated and highly frustrated under Pauling’s ice rules. At low temperature, the strongly correlated protons lose ergodicity, and little is understood about the cooperative thermodynamic and electric response to external stimuli. Here, using a model platinum substrate, we demonstrate emergent high-Tc ferroelectric proton ordering in a heteroepitaxial ice film. Such proton ordering is thermodynamically stable and has an extremely high critical temperature of 175 K. We found that anisotropy and protolysis driven by the electrostatistics at the heterointerface are key factors in stimulating this novel exotic ordering in the many-body correlated proton system. The significant increase in Tc due to the heterointerface suggests the ubiquity of ferroelectric ice in nature—specifically, in space and the polar stratosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of in situ infrared–visible sum-frequency generation (SFG) spectroscopy of a heteroepitaxial ice film.
Figure 2: Infrared–visible sum-frequency generation spectroscopy of crystalline-ice films on Pt(111).
Figure 3: Growth model of crystalline-ice films, the propagation of net-H-down proton ordering, and partial violation of the ice rules on Pt(111).
Figure 4: Effect of ice-rules violation on high-Tc proton ordering.

Similar content being viewed by others

References

  1. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).

    Google Scholar 

  2. Bramwell, S. T. Ferroelectric ice. Nature 397, 212–213 (1999).

    Article  ADS  Google Scholar 

  3. Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    Article  ADS  Google Scholar 

  4. Neto, A. H. C., Pujol, P. & Fradkin, E. Ice: a strongly correlated proton system. Phys. Rev. B 74, 024302 (2006).

    Article  ADS  Google Scholar 

  5. Tajima, Y., Matsuo, T. & Suga, H. Phase transition in KOH-doped hexagonal ice. Nature 299, 810–812 (1982).

    Article  ADS  Google Scholar 

  6. Su, X., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998).

    Article  ADS  Google Scholar 

  7. Salzmann, C. G., Radaelli, P. G., Hallbrucker, A., Mayer, E. & Finney, J. L. The preparation and structures of hydrogen ordered phases of ice. Science 311, 1758–1761 (2006).

    Article  ADS  Google Scholar 

  8. Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).

    Article  Google Scholar 

  9. Arakawa, M. et al. The existence of memory effect on hydrogen ordering in ice: the effect makes ice attractive. Geophys. Res. Lett. 38, L16101 (2011).

    Article  ADS  Google Scholar 

  10. Parkkinen, P., Riikonen, S. & Halonen, L. Ice XI: not that ferroelectric. J. Phys. Chem. C 118, 26264–26275 (2014).

    Article  Google Scholar 

  11. Yen, F. & Chi, Z. Proton ordering dynamics of H2O ice. Phys. Chem. Chem. Phys. 17, 12458–12461 (2015).

    Article  Google Scholar 

  12. Ryzhkin, I. A. & Petrenko, V. F. Proton ordering in ice at an ice–metal interface. J. Exp. Theor. Phys. 101, 317–321 (2005).

    Article  ADS  Google Scholar 

  13. Iedema, M. J. et al. Ferroelectricity in water ice. J. Phys. Chem. B 102, 9203–9214 (1998).

    Article  Google Scholar 

  14. Harnett, J., Haq, S. & Hodgson, A. Electron induced restructuring of crystalline ice adsorbed on Pt(111). Surf. Sci. 528, 15–19 (2003).

    Article  ADS  Google Scholar 

  15. Hodgson, A. & Haq, S. Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64, 381–451 (2009).

    Article  ADS  Google Scholar 

  16. McBride, F. et al. Strain relief and disorder in commensurate water layers formed on Pd(111). J. Phys. Condens. Matter 24, 124102 (2012).

    Article  ADS  Google Scholar 

  17. Denzler, D. N. et al. Interfacial structure of water on Ru(001) investigated by vibrational spectroscopy. Chem. Phys. Lett. 376, 618–624 (2003).

    Article  ADS  Google Scholar 

  18. Witek, H. & Buch, V. Structure of ice multilayers on metals. J. Chem. Phys. 110, 3168–3175 (1999).

    Article  ADS  Google Scholar 

  19. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  ADS  Google Scholar 

  20. Sai, N., Kolpak, A. M. & Rappe, A. M. Ferroelectricity in ultrathin perovskite films. Phys. Rev. B 72, 020101 (2005).

    Article  ADS  Google Scholar 

  21. Nie, S., Bartelt, N. C. & Thürmer, K. Evolution of proton order during ice-film growth: an analysis of island shapes. Phys. Rev. B 84, 035420 (2011).

    Article  ADS  Google Scholar 

  22. Shen, Y. R. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64, 129–150 (2013).

    Article  ADS  Google Scholar 

  23. Nihonyanagi, S., Mondal, J. A., Yamaguchi, S. & Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected VSFG. Annu. Rev. Phys. Chem. 64, 579–603 (2013).

    Article  ADS  Google Scholar 

  24. Nagao, M., Watanabe, K. & Matsumoto, Y. Ultrafast vibrational energy transfer in the layers of D2O and CO on Pt(111) studied with time-resolved sum-frequency-generation spectroscopy. J. Phys. Chem. C 113, 11712–11719 (2009).

    Article  Google Scholar 

  25. Meng, S., Wang, E. G. & Gao, S. Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys. Rev. B 69, 195404 (2004).

    Article  ADS  Google Scholar 

  26. Nie, S., Feibelman, P. J., Bartelt, N. C. & Thürmer, K. Pentagons and heptagons in the first water layer on Pt(111). Phys. Rev. Lett. 105, 026102 (2010).

    Article  ADS  Google Scholar 

  27. Kimmel, G. A., Petrik, N. G., Dohnálek, Z. & Kay, B. D. Crystalline ice growth on Pt(111): observation of a hydrophobic water monolayer. Phys. Rev. Lett. 95, 166102 (2005).

    Article  ADS  Google Scholar 

  28. Thürmer, K. & Bartelt, N. C. Nucleation-limited dewetting of ice films on Pt(111). Phys. Rev. Lett. 100, 186101 (2008).

    Article  ADS  Google Scholar 

  29. Ehre, D. & Cohen, H. Contact-free pyroelectric measurements using X-ray photoelectron spectroscopy. Appl. Phys. Lett. 103, 052901 (2013).

    Article  ADS  Google Scholar 

  30. Kunst, M. & Warman, J. M. Nanosecond time-resolved conductivity studies of pulse-ionized ice. 2. The mobility and trapping of protons. J. Phys. Chem. 87, 4093–4095 (1983).

    Article  Google Scholar 

  31. Mizuse, K., Kuo, J. L. & Fujii, A. Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)n+ (n = 3–11). Chem. Sci. 2, 868–876 (2011).

    Article  Google Scholar 

  32. Sugimoto, T. & Fukutani, K. Effects of rotational-symmetry breaking on physisorption of ortho- and para-H2 on Ag(111). Phys. Rev. Lett. 112, 146101 (2014).

    Article  ADS  Google Scholar 

  33. Scherer, J. R. & Snyder, R. G. Raman intensities of single crystal ice Ih. J. Chem. Phys. 67, 4794–4811 (1977).

    Article  ADS  Google Scholar 

  34. Bu, C., Shi, J., Raut, U., Mitchell, E. H. & Baragiola, R. A. Effect of microstructure on spontaneous polarization in amorphous solid water films. J. Chem. Phys. 142, 134702 (2015).

    Article  ADS  Google Scholar 

  35. Shirane, G. & Oguchi, T. On the transition in KH2PO4 . J. Phys. Soc. Jpn 4, 172–176 (1949).

    Article  ADS  Google Scholar 

  36. Watkins, M., VandeVondele, J. & Slater, B. Point defects at the ice (0001) surface. Proc. Natl Acad. Sci. USA 107, 12429–12434 (2010).

    Article  ADS  Google Scholar 

  37. Hama, T. & Watanabe, N. Surface processes on interstellar amorphous solid water, adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem. Rev. 113, 8783–8839 (2013).

    Article  Google Scholar 

  38. Sugimoto, T. & Fukutani, K. Electric-field-induced nuclear-spin flips mediated by enhanced spin–orbit coupling. Nature Phys. 7, 307–311 (2011).

    Article  ADS  Google Scholar 

  39. Haq, S., Harnett, J. & Hodgson, A. Growth of thin crystalline ice films on Pt(111). Surf. Sci. 505, 171–182 (2002).

    Article  ADS  Google Scholar 

  40. Daschbach, J. L., Peden, B. M., Smith, R. S. & Kay, B. D. Adsorption, desorption, and clustering of H2O on Pt(111). J. Chem. Phys. 120, 1516–1523 (2004).

    Article  ADS  Google Scholar 

  41. Lilach, Y., Iedema, M. J. & Cowin, J. P. Dissociation of water buried under ice on Pt(111). Phys. Rev. Lett. 98, 016105 (2007).

    Article  ADS  Google Scholar 

  42. Lilach, Y., Iedema, M. J. & Cowin, J. P. Reply to comment on ‘Dissociation of water buried under ice on Pt(111)’. Phys. Rev. Lett. 99, 109602 (2007).

    Article  ADS  Google Scholar 

  43. Lilach, Y., Iedema, M. J. & Cowin, J. P. Proton segregation on a growing ice interface. Surf. Sci. 602, 2886–2893 (2008).

    Article  ADS  Google Scholar 

  44. Zimbitas, G., Gallagher, M. E., Darling, G. R. & Hodgson, A. Wetting of mixed OH and H2O layers on Pt(111). J. Chem. Phys. 128, 074701 (2008).

    Article  ADS  Google Scholar 

  45. Waluyo, I. et al. Spectroscopic evidence for the formation of 3-D crystallites during isothermal heating of amorphous ice on Pt(111). Surf. Sci. 602, 2004–2008 (2008).

    Article  ADS  Google Scholar 

  46. Standop, S., Redinger, A., Morgenstern, M., Michely, T. & Busse, C. Molecular structure of the H2O wetting layer on Pt(111). Phys. Rev. B 82, 161412 (2010).

    Article  ADS  Google Scholar 

  47. Sovago, M. et al. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100, 173901 (2008).

    Article  ADS  Google Scholar 

  48. Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132, 6867–6869 (2010).

    Article  Google Scholar 

  49. Pyper, J. W. & Newbury, R. S. Hydrogen–deuterium self-exchange in hydrogen sulfide and hydrogen selenide as studied with a pulsed-molecular-beam quadrupole mass filter. J. Chem. Phys. 52, 1966–1971 (1970).

    Article  ADS  Google Scholar 

  50. Kakiuchi, M. Distribution of isotopic water molecules, H2O, HDO, and D2O, in vapor and liquid phases in pure water and aqueous solution systems. Geochim. Cosmochim. Acta 64, 1485–1492 (2000).

    Article  ADS  Google Scholar 

  51. Inoue, K.-I., Watanabe, K. & Matsumoto, Y. Instantaneous vibrational frequencies of diffusing and desorbing adsorbates: CO/Pt(111). J. Chem. Phys. 137, 024704 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Okumura, K. Harada, F. Kato and H. Takakuwa for assistance with the experiments; K.-I. Inoue, Y. Miyamoto, S. Hatta and T. Aruga for assistance with the apparatus development; T. Hama, A. Kouchi, N. Watanabe, H. Hidaka, H. Kato, S. Yamamoto, Y. Nagata, E. H. G. Backus, M. Bonn, K. Ando, C. Michioka, T. Ishiyama and A. Morita for fruitful discussions. This work was supported by MEXT KAKENHI: Grant-in-Aid for Scientific Research on Innovative Areas, No. 26108508 and 16H00937; JSPS KAKENHI Grant-in-Aid for Young Scientists (B), No. 26810006; Grant-in-Aid for Young Scientists (A), No. 16H06029; Grant-in-Aid for Scientific Research (A), No. 25248006 and 16H02249.

Author information

Authors and Affiliations

Authors

Contributions

T.S. planned and Y.M. organized the project; K.W. developed the experimental system; T.S., N.A. and Y.O. improved the experimental system and conducted measurements, T.S. analysed the data and wrote the manuscript; all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Toshiki Sugimoto or Yoshiyasu Matsumoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5913 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, T., Aiga, N., Otsuki, Y. et al. Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film. Nature Phys 12, 1063–1068 (2016). https://doi.org/10.1038/nphys3820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing