Letter | Published:

Engineering the quantum transport of atomic wavefunctions over macroscopic distances

Nature Physics volume 5, pages 547550 (2009) | Download Citation

Abstract

The manipulation of matter waves had an important role in the history of quantum mechanics. The first experimental validation of matter-wave behaviour was the observation of diffraction of matter by crystals1, followed by interference experiments with electrons, neutrons, atoms and molecules using gratings and Young’s double slit2,3,4,5. More recently, matter-wave manipulation has become a building block for quantum devices such as quantum sensors6 and it has an essential role in a number of proposals for implementing quantum computers7,8. Here, we demonstrate the coherent control of the spatial extent of an atomic wavefunction by reversibly stretching and shrinking the wavefunction over a distance of more than one millimetre. The quantum-coherent process is fully deterministic, reversible and in quantitative agreement with an analytical model. The simplicity of its experimental implementation could ease applications in the field of quantum transport and quantum processing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The scattering of electrons by a single crystal of nickel. Nature 119, 558–560 (1927).

  2. 2.

    Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961).

  3. 3.

    , , , & Single and double slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

  4. 4.

    & Young’s double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).

  5. 5.

    et al. Wave-particle duality of C60 molecules. Nature 401, 680–682 (1999).

  6. 6.

    , & Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999).

  7. 7.

    , , & A ‘Schrödinger cat’ superposition state of an atom. Science 272, 1131–1136 (1996).

  8. 8.

    Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).

  9. 9.

    , , , & Dynamical Bloch band suppression in an optical lattice. Phys. Rev. Lett. 81, 5093–5096 (1998).

  10. 10.

    , , , , & Transport of atoms in a quantum conveyor belt. Phys. Rev. A. 72, 053605 (2005).

  11. 11.

    et al. Josephson junction arrays with Bose–Einstein condensates. Science 293, 843–846 (2001).

  12. 12.

    Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

  13. 13.

    , , , & Parametric amplification of matter waves in periodically translated optical lattices. Phys. Rev. Lett. 95, 170404 (2005).

  14. 14.

    et al. Resonantly enhanced tunnelling of Bose–Einstein condensates in periodic potentials. Phys. Rev. Lett. 98, 120403 (2007).

  15. 15.

    et al. Observation of photon-assisted tunneling in optical lattices. Phys. Rev. Lett. 100, 040404 (2008).

  16. 16.

    Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).

  17. 17.

    et al. Coherent delocalization of atomic wave packets in driven lattice potentials. Phys. Rev. Lett. 100, 043602 (2008).

  18. 18.

    , & Quantum interference in a driven washboard potential. Am. J. Phys. 72, 1017–1025 (2004).

  19. 19.

    , & Atomic motion in tilted optical lattices: An analytical approach. J. Opt. B 6, 301–308 (2004).

  20. 20.

    , , , & Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996).

  21. 21.

    Quantum control and entanglement using periodic driving fields. Phys. Rev. Lett. 99, 110501 (2007).

  22. 22.

    , & Quantum state engineering and precision metrology using state-insensitive light traps. Science 320, 1734–1738 (2008).

  23. 23.

    , , & Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometre scale. Phys. Rev. Lett. 97, 060402 (2006).

Download references

Acknowledgements

We would like to thank M. Artoni, N. Poli, C. W. Oates and M. L. Chiofalo for stimulating discussions, M. Schioppo for his contribution in the early stage of the experiment and R. Ballerini, M. De Pas, M. Giuntini, A. Hajeb and A. Montori for technical assistance. This work was supported by LENS, INFN, EU (under Contract No. RII3-CT-2003 506350 and the FINAQS project), ASI and Ente CRF.

Author information

Affiliations

  1. Dipartimento di Fisica and LENS—Università di Firenze, CNR-INFM, INFN—Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Italy

    • A. Alberti
    • , V. V. Ivanov
    • , G. M. Tino
    •  & G. Ferrari

Authors

  1. Search for A. Alberti in:

  2. Search for V. V. Ivanov in:

  3. Search for G. M. Tino in:

  4. Search for G. Ferrari in:

Corresponding author

Correspondence to G. Ferrari.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1310

Further reading