Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lightwave electronics in condensed matter

Abstract

Key properties of quantum materials stem from dynamic interaction chains that connect stable electronic quasiparticles through short-lived coherences, which are difficult to control at their natural time and length scales. Lightwave electronics sculpts the quantum flow of electrons and coherences faster than an oscillation cycle of light by using intense optical-carrier waves as fast biasing fields, which can access multi-electron interaction chains. In this Review, we summarize the key functionalities and the latest advances in lightwave electronics for both fundamental and technological explorations. For example, lightwave-driven ballistic electron transport through dynamically changing band structures has already led to the demonstration of phenomena such as high-harmonic emission and dynamic Bloch oscillations. Lightwave electronic control could also seamlessly convert quantum states between light and matter to create quantum chips that simultaneously exploit electronics for efficient interactions and optics for speed or long coherence lifetimes. Additionally, we present an outlook towards applications of lightwave electronics including quasiparticle colliders to explore quantum phenomena; all-optical band-structure reconstruction in ambient conditions; attoclocks to measure the interaction dynamics of diverse quantum phenomena; ultrafast electron videography to watch electronic reactions unfold; efficient light sources to create compact integration; and petahertz electronics to speed up traditional semiconductor electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scope of lightwave electronics.
Fig. 2: Harmonic generation in solids.
Fig. 3: Lightwave characterization of quantum materials.
Fig. 4: Timing and duration of high-harmonic emission.
Fig. 5: Advances in attosecond clocking.
Fig. 6: Lightwave videography in real and momentum space.
Fig. 7: Petahertz electronics.

Similar content being viewed by others

References

  1. Kono, J. et al. Resonant terahertz optical sideband generation from confined magnetoexcitons. Phys. Rev. Lett. 79, 1758–1761 (1997).

    Article  CAS  Google Scholar 

  2. Chin, A. H., Calderón, O. G. & Kono, J. Extreme midinfrared nonlinear optics in semiconductors. Phys. Rev. Lett. 86, 3292–3295 (2001).

    Article  CAS  Google Scholar 

  3. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  CAS  Google Scholar 

  4. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

    Article  CAS  Google Scholar 

  5. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  CAS  Google Scholar 

  6. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  Google Scholar 

  7. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    Article  CAS  Google Scholar 

  8. Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017).

    Article  CAS  Google Scholar 

  9. Ludwig, M. et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 16, 341–345 (2020).

    Article  CAS  Google Scholar 

  10. Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    Article  CAS  Google Scholar 

  11. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  CAS  Google Scholar 

  12. Langer, F. et al. Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

    Article  CAS  Google Scholar 

  13. Borsch, M. et al. Super-resolution lightwave tomography of electronic bands in quantum materials. Science 370, 1204–1207 (2020).

    Article  CAS  Google Scholar 

  14. Freudenstein, J. et al. Attosecond clocking of correlations between Bloch electrons. Nature 610, 290–295 (2022).

    Article  CAS  Google Scholar 

  15. Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).

    Article  CAS  Google Scholar 

  16. Heide, C. et al. Attosecond-fast internal photoemission. Nat. Photon. 14, 219–222 (2020).

    Article  CAS  Google Scholar 

  17. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    Article  CAS  Google Scholar 

  18. Giorgianni, F. et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nat. Commun. 7, 11421 (2016).

    Article  CAS  Google Scholar 

  19. Baykusheva, D. et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett. 21, 8970–8978 (2021).

    Article  CAS  Google Scholar 

  20. Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021).

    Article  CAS  Google Scholar 

  21. Bai, Y. et al. High-harmonic generation from topological surface states. Nat. Phys. 17, 311–315 (2021).

    Article  CAS  Google Scholar 

  22. Cheng, B. et al. Efficient terahertz harmonic generation with coherent acceleration of electrons in the Dirac semimetal Cd3As2. Phys. Rev. Lett. 124, 117402 (2020).

    Article  CAS  Google Scholar 

  23. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  Google Scholar 

  24. Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 585, 58–62 (2020).

    Article  CAS  Google Scholar 

  25. Ilderem, V. The technology underpinning 5G. Nat. Electron. 3, 5–6 (2020).

    Article  Google Scholar 

  26. Almand-Hunter, A. E. et al. Quantum droplets of electrons and holes. Nature 506, 471–475 (2014).

    Article  CAS  Google Scholar 

  27. Van Tuan, D., Shi, S.-F., Xu, X., Crooker, S. A. & Dery, H. Six-body and eight-body exciton states in monolayer WSe2. Phys. Rev. Lett. 129, 76801 (2022).

    Article  Google Scholar 

  28. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  CAS  Google Scholar 

  29. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  30. Lee, K. W. & Lee, C. E. Strain-induced topological phase transition with inversion of the in-plane electric polarization in tiny-gap semiconductor SiGe monolayer. Sci. Rep. 10, 11300 (2020).

    Article  CAS  Google Scholar 

  31. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    Article  CAS  Google Scholar 

  32. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  CAS  Google Scholar 

  33. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  CAS  Google Scholar 

  34. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  CAS  Google Scholar 

  35. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nat. Phys. 2, 781–786 (2006).

    Article  CAS  Google Scholar 

  36. Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010).

    Article  CAS  Google Scholar 

  37. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    Article  CAS  Google Scholar 

  38. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  CAS  Google Scholar 

  39. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  CAS  Google Scholar 

  40. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  CAS  Google Scholar 

  41. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  CAS  Google Scholar 

  42. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  CAS  Google Scholar 

  43. Vozzi, C. et al. Generalized molecular orbital tomography. Nat. Phys. 7, 822–826 (2011).

    Article  Google Scholar 

  44. Vampa, G, et et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 73901 (2014).

    Article  Google Scholar 

  45. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).

    Article  Google Scholar 

  46. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  CAS  Google Scholar 

  47. Merlin, R. Rabi oscillations, Floquet states, Fermi’s golden rule, and all that: insights from an exactly solvable two-level model. Am. J. Phys. 89, 26–34 (2021).

    Article  CAS  Google Scholar 

  48. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  Google Scholar 

  49. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

    Article  CAS  Google Scholar 

  50. Černe, J. et al. Terahertz dynamics of excitons in GaAs/AlGaAs quantum wells. Phys. Rev. Lett. 77, 1131–1134 (1996).

    Article  Google Scholar 

  51. Danielson, J. R. et al. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Phys. Rev. Lett. 99, 237401 (2007).

    Article  CAS  Google Scholar 

  52. Leinß, S. et al. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101, 246401 (2008).

    Article  Google Scholar 

  53. Wagner, M. et al. Observation of the intraexciton Autler–Townes effect in GaAs / AlGaAs semiconductor quantum wells. Phys. Rev. Lett. 105, 167401 (2010).

    Article  Google Scholar 

  54. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article  CAS  Google Scholar 

  55. Macklin, J. J., Kmetec, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).

    Article  CAS  Google Scholar 

  56. Banks, H, B. et al. Dynamical birefringence: electron–hole recollisions as probes of Berry curvature. Phys. Rev. X 7, 041042 (2017).

    Google Scholar 

  57. Kelley, P. L. Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965).

    Article  Google Scholar 

  58. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  CAS  Google Scholar 

  59. Akhmediev, N. & Ankiewicz, A. Solitons: Non-Linear Pulses and Beams (Chapman & Hall, 1997).

  60. Kilen, I. et al. Propagation induced dephasing in semiconductor high-harmonic generation. Phys. Rev. Lett. 125, 83901 (2020).

    Article  CAS  Google Scholar 

  61. Kira, M. & Koch, S. W. Semiconductor Quantum Optics (Cambridge Univ. Press, 2012).

  62. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 21001 (2018).

    Article  CAS  Google Scholar 

  63. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  CAS  Google Scholar 

  64. Kira, M. & Koch, S. W. Quantum-optical spectroscopy of semiconductors. Phys. Rev. A 73, 013813 (2006).

    Article  Google Scholar 

  65. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  66. Bayerl, D. et al. Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 109, 241102 (2016).

    Article  Google Scholar 

  67. Wu, Y. et al. Monolayer GaN excitonic deep ultraviolet light emitting diodes. Appl. Phys. Lett. 116, 13101 (2020).

    Article  CAS  Google Scholar 

  68. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

    Article  CAS  Google Scholar 

  69. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a Moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  Google Scholar 

  70. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    Article  CAS  Google Scholar 

  71. Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. Phys. Status Solidi B 248, 863–866 (2011).

    Article  CAS  Google Scholar 

  72. Avetissian, H. K., Mkrtchian, G. F. & Knorr, A. Efficient high-harmonic generation in graphene with two-color laser field at orthogonal polarization. Phys. Rev. B 105, 195405 (2022).

    Article  CAS  Google Scholar 

  73. Jahnke, F. et al. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett. 77, 5257–5260 (1996).

    Article  CAS  Google Scholar 

  74. Kira, M. & Koch, S. W. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron. 30, 155–296 (2006).

    Article  Google Scholar 

  75. Smith, R. P. et al. Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells. Phys. Rev. Lett. 104, 247401 (2010).

    Article  CAS  Google Scholar 

  76. Cong, K. et al. Quantum-memory-enabled ultrafast optical switching in carbon nanotubes. ACS Photon. 7, 1382–1387 (2020).

    Article  CAS  Google Scholar 

  77. Steinhoff, A., Rösner, M., Jahnke, F., Wehling, T. O. & Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2. Nano Lett. 14, 3743–3748 (2014).

    Article  CAS  Google Scholar 

  78. Solovyev, I. V. Combining DFT and many-body methods to understand correlated materials. J. Phys. Condens. Matter 20, 293201 (2008).

    Article  Google Scholar 

  79. Silva, R. E. F., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photon. 12, 266–270 (2018).

    Article  CAS  Google Scholar 

  80. Sholl, D. S. & Steckel, J. A. Density Functional Theory: A Practical Introduction (John Wiley & Sons, 2011).

  81. Aryasetiawan, F. & Gunnarsson, O. GW method. Rep. Prog. Phys. 61, 237–312 (1998).

    Article  CAS  Google Scholar 

  82. Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 75330 (2008).

    Article  Google Scholar 

  83. Yue, L. & Gaarde, M. B. Introduction to theory of high-harmonic generation in solids: tutorial. J. Opt. Soc. Am. B 39, 535 (2022).

    Article  CAS  Google Scholar 

  84. Golde, D., Meier, T. & Koch, S. W. Microscopic analysis of extreme nonlinear optics in semiconductor nanostructures. J. Opt. Soc. Am. B 23, 2559–2565 (2006).

    Article  CAS  Google Scholar 

  85. Baykusheva, D. et al. Strong-field physics in three-dimensional topological insulators. Phys. Rev. A 103, 23101 (2021).

    Article  CAS  Google Scholar 

  86. Tamaya, T., Ishikawa, A., Ogawa, T. & Tanaka, K. Diabatic mechanisms of higher-order harmonic generation in solid-state materials under high-intensity electric fields. Phys. Rev. Lett. 116, 16601 (2016).

    Article  CAS  Google Scholar 

  87. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  CAS  Google Scholar 

  88. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  CAS  Google Scholar 

  89. Jiménez-Galán, Á., Silva, R. E. F., Smirnova, O. & Ivanov, M. Lightwave control of topological properties in 2D materials for sub-cycle and non-resonant valley manipulation. Nat. Photon. 14, 728–732 (2020).

    Article  Google Scholar 

  90. Yue, L. & Gaarde, M. B. Expanded view of electron–hole recollisions in solid-state high-order harmonic generation: full-Brillouin-zone tunneling and imperfect recollisions. Phys. Rev. A 103, 63105 (2021).

    Article  CAS  Google Scholar 

  91. Liu, R. B. & Zhu, B. F. High-order THz-sideband generation in semiconductors. AIP Conf. Proc. 893, 1455–1456 (2007).

    Article  CAS  Google Scholar 

  92. Vampa, G., McDonald, C. R., Orlando, G., Corkum, P. B. & Brabec, T. Semiclassical analysis of high harmonic generation in bulk crystals. Phys. Rev. B 91, 64302 (2015).

    Article  Google Scholar 

  93. Hawkins, P. G. & Ivanov, M. Y. Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures. Phys. Rev. A 87, 63842 (2013).

    Article  Google Scholar 

  94. Yang, F. & Liu, R.-B. Berry phases of quantum trajectories of optically excited electron–hole pairs in semiconductors under strong terahertz fields. N. J. Phys. 15, 115005 (2013).

    Article  Google Scholar 

  95. Faisal, F. H. M. & Kamiński, J. Z. Floquet–Bloch theory of high-harmonic generation in periodic structures. Phys. Rev. A 56, 748–762 (1997).

    Article  CAS  Google Scholar 

  96. Neufeld, O., Podolsky, D. & Cohen, O. Floquet group theory and its application to selection rules in harmonic generation. Nat. Commun. 10, 405 (2019).

    Article  Google Scholar 

  97. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  Google Scholar 

  98. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

    Article  Google Scholar 

  99. Gorlach, A., Neufeld, O., Rivera, N., Cohen, O. & Kaminer, I. The quantum-optical nature of high harmonic generation. Nat. Commun. 11, 4598 (2020).

    Article  CAS  Google Scholar 

  100. Ullrich, C. A. Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford Univ. Press, 2011).

  101. Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Impact of the electronic band structure in high-harmonic generation spectra of solids. Phys. Rev. Lett. 118, 87403 (2017).

    Article  Google Scholar 

  102. Tancogne-Dejean, N. & Rubio, A. Atomic-like high-harmonic generation from two-dimensional materials. Sci. Adv. 4, eaao5207 (2018).

    Article  Google Scholar 

  103. Bauer, D. & Hansen, K. K. High-harmonic generation in solids with and without topological edge states. Phys. Rev. Lett. 120, 177401 (2018).

    Article  CAS  Google Scholar 

  104. Lenzner, M. et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076–4079 (1998).

    Article  CAS  Google Scholar 

  105. Paasch-Colberg, T. et al. Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime. Optica 3, 1358–1361 (2016).

    Article  Google Scholar 

  106. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    Article  CAS  Google Scholar 

  107. Schaffer, C. B., Brodeur, A. & Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 12, 1784–1794 (2001).

    Article  CAS  Google Scholar 

  108. Wang, C. M., Ho, T. S. & Chu, S. I. Determination of band structure from the intra-band power spectrum of high harmonic generation in crystal. J. Phys. B 49, 225401 (2016).

    Article  Google Scholar 

  109. Lanin, A. A., Stepanov, E. A., Fedotov, A. B. & Zheltikov, A. M. Mapping the electron band structure by intraband high-harmonic generation in solids. Optica 4, 516 (2017).

    Article  CAS  Google Scholar 

  110. Luu, T. T. & Wörner, H. J. Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018).

    Article  Google Scholar 

  111. Zhao, Y.-T. et al. All-optical reconstruction of k-dependent transition dipole moment by solid harmonic spectra from ultrashort laser pulses. Opt. Express 27, 34392–34404 (2019).

    Article  CAS  Google Scholar 

  112. Uzan, A. J. et al. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photon. 14, 183–187 (2020).

    Article  CAS  Google Scholar 

  113. Costello, J. B. et al. Reconstruction of Bloch wavefunctions of holes in a semiconductor. Nature 599, 57–61 (2021).

    Article  CAS  Google Scholar 

  114. Hall, J. L. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  Google Scholar 

  115. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).

    Article  Google Scholar 

  116. Yoshikawa, N., Tamaya, T. & Tanaka, K. Optics: high-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  CAS  Google Scholar 

  117. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  CAS  Google Scholar 

  118. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  CAS  Google Scholar 

  119. Langer, F. et al. Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal. Nat. Photon. 11, 227–231 (2017).

    Article  CAS  Google Scholar 

  120. Garg, M., Kim, H. Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photon. 12, 291–296 (2018).

    Article  CAS  Google Scholar 

  121. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  CAS  Google Scholar 

  122. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  CAS  Google Scholar 

  123. Neppl, S. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015).

    Article  CAS  Google Scholar 

  124. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    Article  CAS  Google Scholar 

  125. Seiffert, L. et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13, 766–770 (2017).

    Article  CAS  Google Scholar 

  126. Siek, F. et al. Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions. Science 357, 1274–1277 (2017).

    Article  CAS  Google Scholar 

  127. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Article  CAS  Google Scholar 

  128. Volkov, M. et al. Attosecond screening dynamics mediated by electron localization in transition metals. Nat. Phys. 15, 1145–1149 (2019).

    Article  CAS  Google Scholar 

  129. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  CAS  Google Scholar 

  130. Lucchini, M. et al. Attosecond dynamical Franz–Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  CAS  Google Scholar 

  131. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  CAS  Google Scholar 

  132. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  Google Scholar 

  133. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  134. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  135. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  136. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 31013 (2015).

    Google Scholar 

  137. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article  Google Scholar 

  138. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  CAS  Google Scholar 

  139. Yoshida, S. et al. Probing ultrafast spin dynamics with optical pump–probe scanning tunnelling microscopy. Nat. Nanotechnol. 9, 588–593 (2014).

    Article  CAS  Google Scholar 

  140. Ammerman, S. E. et al. Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons. Nat. Commun. 12, 6794 (2021).

    Article  CAS  Google Scholar 

  141. Yoshida, S. et al. Terahertz scanning tunneling microscopy for visualizing ultrafast electron motion in nanoscale potential variations. ACS Photon. 8, 315–323 (2021).

    Article  CAS  Google Scholar 

  142. Arashida, Y. et al. Subcycle mid-infrared electric-field-driven scanning tunneling microscopy with a time resolution higher than 30 fs. ACS Photon. 9, 3156–3164 (2022).

    Article  CAS  Google Scholar 

  143. Kwon, O. & Kim, D. PHz current switching in calcium fluoride single crystal. Appl. Phys. Lett. 108, 191112 (2016).

    Article  Google Scholar 

  144. Boolakee, T. et al. Light-field control of real and virtual charge carriers. Nature 605, 251–255 (2022).

    Article  CAS  Google Scholar 

  145. Langer, F. et al. Few-cycle lightwave-driven currents in a semiconductor at high repetition rate. Optica 7, 276–279 (2020).

    Article  CAS  Google Scholar 

  146. Rauch, J. & Mourou, G. The time integrated far field for Maxwell’s and D’Alembert’s equations. Proc. Am. Math. Soc. 134, 851–858 (2006).

    Article  Google Scholar 

  147. Meineke, C. et al. Scalable high-repetition-rate sub-half-cycle terahertz pulses from spatially indirect interband transitions. Light. Sci. Appl. 11, 151 (2022).

    Article  CAS  Google Scholar 

  148. Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  CAS  Google Scholar 

  149. Liu, H. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14, 1006–1010 (2018).

    Article  CAS  Google Scholar 

  150. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  Google Scholar 

  151. Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 20501 (2020).

    Article  Google Scholar 

  152. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article  CAS  Google Scholar 

  153. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  154. Mak, K. F. & Shan, J. Semiconductor Moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  Google Scholar 

  155. Taghizadeh, A., Thygesen, K. S. & Pedersen, T. G. Two-dimensional materials with giant optical nonlinearities near the theoretical upper limit. ACS Nano 15, 7155–7167 (2021).

    Article  CAS  Google Scholar 

  156. Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 81406 (2009).

    Article  Google Scholar 

  157. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  Google Scholar 

  158. de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 41002 (2021).

    Article  Google Scholar 

  159. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  CAS  Google Scholar 

  160. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article  CAS  Google Scholar 

  161. Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump–probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article  CAS  Google Scholar 

  162. Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article  Google Scholar 

  163. Reutzel, M., Li, A., Wang, Z. & Petek, H. Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat. Commun. 11, 2230 (2020).

    Article  CAS  Google Scholar 

  164. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  CAS  Google Scholar 

  165. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  CAS  Google Scholar 

  166. Träger, N. et al. Real-space observation of magnon interaction with driven space–time crystals. Phys. Rev. Lett. 126, 57201 (2021).

    Article  Google Scholar 

  167. Holthaus, M. Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B 49, 13001 (2015).

    Article  Google Scholar 

  168. Ikeda, T. N., Tanaka, S. & Kayanuma, Y. Floquet–Landau–Zener interferometry: usefulness of the Floquet theory in pulse-laser-driven systems. Phys. Rev. Res. 4, 33075 (2022).

    Article  CAS  Google Scholar 

  169. Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

    Article  CAS  Google Scholar 

  170. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III–V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article  Google Scholar 

  171. Wang, P. et al. Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021).

    Article  CAS  Google Scholar 

  172. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  CAS  Google Scholar 

  173. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  174. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  CAS  Google Scholar 

  175. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  CAS  Google Scholar 

  176. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in Moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  177. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  CAS  Google Scholar 

  178. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  CAS  Google Scholar 

  179. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  CAS  Google Scholar 

  180. Yuan, H. Y., Cao, Y., Kamra, A., Duine, R. A. & Yan, P. Quantum magnonics: when magnon spintronics meets quantum information science. Phys. Rep. 965, 1–74 (2022).

    Article  Google Scholar 

  181. Siegrist, F. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019).

    Article  CAS  Google Scholar 

  182. Kira, M., Roumpos, G. & Cundiff, S. T. in Semiconductors and Semimetals Vol. 105, 417–460, Ch. 10 (Elsevier, 2020).

  183. Kira, M. et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining ‘Boser’ experiments. Phys. Rev. Lett. 79, 5170–5173 (1997).

    Article  CAS  Google Scholar 

  184. Chatterjee, S. et al. Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. Phys. Rev. Lett. 92, 067402 (2004).

    Article  CAS  Google Scholar 

  185. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    Article  CAS  Google Scholar 

  186. Kira, M., Jahnke, F. & Koch, S. W. Quantum theory of secondary emission in optically excited semiconductor quantum wells. Phys. Rev. Lett. 82, 3544–3547 (1999).

    Article  CAS  Google Scholar 

  187. Lee, Y.-S. et al. Quantum correlations and intraband coherences in semiconductor cavity QED. Phys. Rev. Lett. 83, 5338–5341 (1999).

    Article  CAS  Google Scholar 

  188. Ell, C. et al. Quantum correlations in the nonperturbative regime of semiconductor microcavities. Phys. Rev. Lett. 85, 5392–5395 (2000).

    Article  CAS  Google Scholar 

  189. Kira, M., Koch, S. W., Smith, R. P., Hunter, A. E. & Cundiff, S. T. Quantum spectroscopy with Schrödinger-cat states. Nat. Phys. 7, 799–804 (2011).

    Article  Google Scholar 

  190. Dombi, P. et al. Strong-field nano-optics. Rev. Mod. Phys. 92, 25003 (2020).

    Article  CAS  Google Scholar 

  191. Kim, H. Y. et al. Attosecond field emission. Nature 613, 662–666 (2023).

    Article  CAS  Google Scholar 

  192. Dienstbier, P. et al. Tracing attosecond electron emission from a nanometric metal tip. Nature 616, 702–706 (2023).

    Article  CAS  Google Scholar 

  193. Müller, M., Martín Sabanés, N., Kampfrath, T. & Wolf, M. Phase-resolved detection of ultrabroadband THz pulses inside a scanning tunneling microscope junction. ACS Photonics 7, 2046–2055 (2020).

    Article  Google Scholar 

  194. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors 5th edn (World Scientific Publishing Company, 2009).

  195. Aversa, C. & Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52, 14636–14645 (1995).

    Article  CAS  Google Scholar 

  196. Mahan, G. D. Many-Particle Physics (Springer Science & Business Media, 2000).

  197. Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems (Courier Corporation, 2012).

  198. Klingshirn, C. F. Semiconductor Optics (Springer, 2005).

  199. Kira, M. & Koch, S. W. Cluster-expansion representation in quantum optics. Phys. Rev. A 78, 22102 (2008).

    Article  Google Scholar 

  200. Buschlinger, R., Lorke, M. & Peschel, U. Light–matter interaction and lasing in semiconductor nanowires: a combined finite-difference time-domain and semiconductor Bloch equation approach. Phys. Rev. B 91, 45203 (2015).

    Article  Google Scholar 

  201. Leymann, H. A. M. et al. Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition. Phys. Rev. A 87, 53819 (2013).

    Article  Google Scholar 

  202. Kira, M. Hyperbolic Bloch equations: atom-cluster kinetics of an interacting Bose gas. Ann. Phys. 356, 185–243 (2015).

    Article  CAS  Google Scholar 

  203. Kira, M Coherent quantum depletion of an interacting atom condensate. Nat. Commun. 6, 6624 (2015).

    Article  Google Scholar 

  204. Coester, F. Bound states of a many-particle system. Nucl. Phys. 7, 421–424 (1958).

    Article  Google Scholar 

  205. Čížek, J. On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell‐type expansion using quantum‐field theoretical methods. J. Chem. Phys. 45, 4256–4266 (1966).

    Article  Google Scholar 

  206. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    Article  CAS  Google Scholar 

  207. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  208. Chen, G. et al. Optically induced entanglement of excitons in a single quantum dot. Science 289, 1906–1909 (2000).

    Article  CAS  Google Scholar 

  209. Gibbs, H. M. et al. Saturation of the free exciton resonance in GaAs. Solid. State Commun. 30, 271–275 (1979).

    Article  CAS  Google Scholar 

  210. Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (1989).

    Article  CAS  Google Scholar 

  211. Wang, H. et al. Transient nonlinear optical response from excitation induced dephasing in GaAs. Phys. Rev. Lett. 71, 1261–1264 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.B. and M.K. received support from ARO through Award W911NF1810299, W.M. Keck Foundation and College of Engineering Blue Sky Research Program. M.M. and R.H. have been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project ID 422 314695032-SFB 1277 (Subproject A05) as well as Research Grants HU1598/7 and HU1598/8. The authors acknowledge F. Langer and M. Knorr for discussions on early versions of this Review and J. Freudenstein for his help in generating some of the 3D graphics shown in the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing and editing of the article.

Corresponding authors

Correspondence to Rupert Huber or Mackillo Kira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Nicholas Karpowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsch, M., Meierhofer, M., Huber, R. et al. Lightwave electronics in condensed matter. Nat Rev Mater 8, 668–687 (2023). https://doi.org/10.1038/s41578-023-00592-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00592-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing