Letter | Published:

Quantum error correction beyond qubits

Nature Physics volume 5, pages 541546 (2009) | Download Citation

Abstract

Quantum computation and communication rely on the ability to manipulate quantum states robustly and with high fidelity. To protect fragile quantum-superposition states from corruption through so-called decoherence noise, some form of error correction is needed. Therefore, the discovery of quantum error correction1,2 (QEC) was a key step to turn the field of quantum information from an academic curiosity into a developing technology. Here, we present an experimental implementation of a QEC code for quantum information encoded in continuous variables, based on entanglement among nine optical beams3. This nine-wave-packet adaptation of Shor’s original nine-qubit scheme1 enables, at least in principle, full quantum error correction against an arbitrary single-beam error.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

  2. 2.

    Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

  3. 3.

    Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998).

  4. 4.

    , & Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

  5. 5.

    , & No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).

  6. 6.

    et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

  7. 7.

    et al. Experimental realization of a two-bit phase damping quantum code. Phys. Rev. A 60, 1924–1943 (1999).

  8. 8.

    et al. Benchmarking quantum computers: The five-qubit error correcting code. Phys. Rev. Lett. 86, 5811–5814 (2001).

  9. 9.

    et al. Experimental implementation of a concatenated quantum error-correcting code. Phys. Rev. Lett. 94, 130501 (2005).

  10. 10.

    et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

  11. 11.

    et al. High-fidelity Z-measurement error encoding of optical qubits. Phys. Rev. A 71, 060303 (2005).

  12. 12.

    et al. Experimental quantum coding against qubit loss error. Proc. Natl Acad. Sci. USA 105, 11050–11054 (2008).

  13. 13.

    Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084–4087 (1998).

  14. 14.

    & Analog quantum error correction. Phys. Rev. Lett. 80, 4088–4091 (1998).

  15. 15.

    , & Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430–433 (2004).

  16. 16.

    A note on quantum error correction with continuous variables. Preprint at <> (2008).

  17. 17.

    et al. Distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006).

  18. 18.

    et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).

  19. 19.

    et al. Preparation of distilled and purified continuous-variable entangled states. Nature Phys. 4, 915–918 (2008).

  20. 20.

    , & Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Lett. 101, 130503 (2008).

  21. 21.

    et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

  22. 22.

    et al. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 64, 022321 (2001).

  23. 23.

    et al. Quantum benchmark for storage and transmission of coherent states. Phys. Rev. Lett. 94, 150503 (2005).

Download references

Acknowledgements

This work was partly supported by SCF, GIA, G-COE and PFN commissioned by the MEXT of Japan, and the Research Foundation for Opto-Science and Technology. S.L.B. appreciated discussions with Netta Cohen. P.v.L. acknowledges the DFG for financial support under the Emmy Noether programme. A.F. acknowledges Y. Takeno for preparing the figures. P.v.L. thanks Gerd Leuchs for useful discussions.

Author information

Author notes

    • Takao Aoki

    Current address: Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Affiliations

  1. Department of Applied Physics and Quantum Phase Electronics Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

    • Takao Aoki
    • , Go Takahashi
    • , Tadashi Kajiya
    • , Jun-ichi Yoshikawa
    •  & Akira Furusawa
  2. CREST, Japan Science and Technology (JST) Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

    • Go Takahashi
    • , Tadashi Kajiya
    • , Jun-ichi Yoshikawa
    •  & Akira Furusawa
  3. Computer Science, University of York, York YO10 5DD, UK

    • Samuel L. Braunstein
  4. Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light and Institute of Theoretical Physics I, Universität Erlangen-Nürnberg, Staudtstr.7/B2, 91058 Erlangen, Germany

    • Peter van Loock

Authors

  1. Search for Takao Aoki in:

  2. Search for Go Takahashi in:

  3. Search for Tadashi Kajiya in:

  4. Search for Jun-ichi Yoshikawa in:

  5. Search for Samuel L. Braunstein in:

  6. Search for Peter van Loock in:

  7. Search for Akira Furusawa in:

Contributions

Project planning: T.A., A.F. Experimental work: T.A., G.T., T.K., J.Y. Theoretical work: S.L.B., P.v.L., A.F.

Corresponding author

Correspondence to Akira Furusawa.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1309

Further reading