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Quantum error correction beyond qubits
Takao Aoki1*, Go Takahashi1,2, Tadashi Kajiya1,2, Jun-ichi Yoshikawa1,2, Samuel L. Braunstein3,
Peter van Loock4 and Akira Furusawa1,2†

Quantum computation and communication rely on the ability to
manipulate quantum states robustly and with high fidelity. To
protect fragile quantum-superposition states from corruption
through so-called decoherence noise, some form of error
correction is needed. Therefore, the discovery of quantum error
correction1,2 (QEC) was a key step to turn the field of quantum
information from an academic curiosity into a developing
technology. Here, we present an experimental implementation
of a QEC code for quantum information encoded in continuous
variables, based on entanglement among nine optical beams3.
This nine-wave-packet adaptation of Shor’s original nine-qubit
scheme1 enables, at least in principle, full quantum error
correction against an arbitrary single-beam error.

Quantum error correction protocols eliminate uncontrolled
errors that affect fragile quantum-superposition states by encoding
these quantum states into a larger, multi-partite entangled system.
Errors occurring on a limited number of parties will leave the
entanglement intact and so the original state may be retrieved
by error syndrome recognition followed by recovery operations.
Shor1 proposed a concatenated quantum code to protect against
arbitrary single-qubit errors, by encoding an arbitrary single-qubit
state |ψ〉=α|0〉+β|1〉 into nine physical qubits

|ψencode〉=α|+,+,+〉+β|−,−,−〉

with |±〉 = (|0,0,0〉 ± |1,1,1〉)/
√
2. Although reminiscent of the

redundant encoding in classical error correction, the quantum
code exhibits some clearly non-classical features of which the
most significant is the presence of multi-party entanglement. The
concatenation of three-party entangled states (|±〉) into nine-party
states enables one to correct both bit-flip and phase-flip errors. The
latter type of error occurs only in non-classical states. Remarkably,
suitable error syndrome measurements would collapse an arbitrary
error (including coherent superpositions of bit-flip and phase-flip
errors) into the discrete set of only bit-flip and/or phase-flip
errors. These discrete (Pauli) errors can be easily reversed to
recover the original state.

The continuous-variable version of Shor’s nine-qubit code1,3 is
the only code so far that can be deterministically (unconditionally)
implemented using only linear operations and resources. Like
the discrete Shor code, it can correct arbitrary errors on
single channels; however, more sophisticated codes would be
required to correct some important forms of error such as loss
on all channels simultaneously4,5. Our experiment is the first
implementation of a Shor-type code, as the preparation of nine-
party entanglement is still beyond the scope of existing non-optical
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Figure 1 | Schematic diagram for the nine-wave-packet quantum
error-correction code operation (ref. 3) for correcting an arbitrary error
occurring in any one of the nine channels. The grey dotted lines represent
the classical information that is used to compute the necessary syndrome
recovery operations. an1–an8: ancillae; R: reflectivity.

approaches and single-photon-based optical schemes. Indeed,
previous implementations of QEC were based on qubit codes,
either in liquid-state NMR (using up to five qubits)6–9, linear
ion trap hardware configurations (using up to three qubits)10 or
single-photon linear optics (using up to four qubits)11,12. Here,
continuous-variable QEC (refs 13, 14) uses squeezed states of light
and networks of beam splitters3. Even this optical approach requires
an optical network three times the size of that used in earlier
experiments15 to achieve the large-scale multi-partite entanglement
for a nine-wave-packet code.

In our scheme, as for the simplest QEC codes (whether for
qubits or for continuous variables), a single, arbitrary error
can be corrected. Such schemes typically assume that errors
occur stochastically and therefore rely on the low frequency
of multiple errors. Stochastic error models may describe,
for example, stochastic, depolarizing channels for qubits, or
in the continuous-variable regime16, free-space channels with
atmospheric fluctuations causing beam jitter, as considered recently
for various non-deterministic distillation protocols17–20. For the
continuous-variable QEC protocols, as realized in the present work,
this type of error may be suppressed in a deterministic fashion (see
Supplementary Information, Part F). The overall performance of
this family of QEC codes is then limited only by the accuracy with
which ancilla-state preparation, encoding and decoding circuits,
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Table 1 | Error syndrome measurements.

Channel with
an error

Detectors with
non-zero outputs

LO
phase

1 1 x
2 p

2 1 x
2, 3 (DS) p

3 1 x
2, 3 (ES) p

4 1, 4 (DS) x
5 p

5 1, 4 (DS) x
5, 6 (DS) p

6 1, 4 (DS) x
5, 6 (ES) p

7 1, 4 (ES) x
7 p

8 1, 4 (ES) x
7, 8 (DS) p

9 1, 4 (ES) x
7, 8 (ES) p

LO phase: quadrature at which the local oscillator phase of the homodyne detector is locked, ES:
equal signs, DS: different signs.

and syndrome extraction and recovery operations can be achieved.
In the continuous-variable scheme, all of these ingredients can be
highly efficiently implemented. In the absence of squeezing, the
fidelity is limited by the vacuum noise. We dub this case quantum-
limited error correction. Squeezing of the auxiliary modes is linked
with the presence of entanglement and thus determines whether
the transfer fidelities exceed those of the quantum-limited error
correction (see Supplementary Information, Parts E and F).

We begin with a description of the scheme in the limit of infinite
squeezing, where the position x and momentum p of a harmonic

oscillator (corresponding to a single optical mode of the light field)
serve as the conjugate pair of observables used for the encoding

|ψencode〉=

∫
dpψ(p) |p,p,p〉

with |p〉 = (1/
√
π)

∫
dxe2ixp |x, x, x〉, for the units-free choice

h̄= 1/2. Through this nine-wave-packet code, an arbitrary single-
mode state |ψ〉=

∫
dx ψ(x)|x〉 is encoded into nine optical modes.

This perfectly encoded state is obtained by using eight infinitely
squeezed ancilla states. Finite squeezing of the ancillae leads to an
approximate encoding, and hence lowers the fidelity of theQEC.

Figure 1 shows a schematic diagram of our realization of the
nine-wave-packet code. In the encoding stage, an input state is
entangled with eight squeezed ancillae, each corresponding to an
approximate ‘0’ (‘blank’) state. After an error is introduced, the
states are decoded simply by inverting the encoding. The eight
ancillamodes are thenmeasured (with x-quadraturemeasurements
carried out in detectors 1 and 4 and p-quadrature measurements in
six other detectors), and the results of the measurements are used
for error syndrome recognition.More precisely, these are the results
of homodyne detection applied to the ancilla modes along their
initial squeezing direction.

The encoding stage consists of two steps to realize the
concatenation of position and momentum codes3. First, position-
encoding is achieved by means of a tritter Tin,an1,an4, that is, two
beam splitters (blue and green in Fig. 1) acting on the input mode
and two x-squeezed ancilla modes (an1 and an4 in Fig. 1). The
second step provides the momentum-encoding by means of three
more tritters, with six extra p-squeezed ancillamodes (an2, an3, an5,
an6, an7 and an8 in Fig. 1). The overall encoding circuit becomes

Tan4,an7,an8Tan1,an5,an6Tin,an2,an3Tin,an1,an4 (1)

In the experiment, we generated a code state with position x and
momentum p interchanged. This alternate encoding (and the cor-
responding QEC protocol) involves only a change of basis with no
drop in performance. Quantum optically, this change corresponds
to a 90◦ rotation of the quadrature amplitudes, requiring local
oscillator phases to be shifted by 90◦ for homodyne detection.
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Figure 2 | Experimental set-up of the nine-wave-packet quantum error correction. PBS: polarization beam splitter, PPKTP: periodically poled KTiOPO4,
HBS: half (symmetric) beam splitter, HWP: half-wave plate, ND: neutral density filter, PZT: piezoelectric transducer, BHD: balanced homodyning, SHD:
self-homodyning, OPO: optical parametric oscillator, MCC: mode-cleaning cavity, LO: local oscillator, ISO: optical isolator, EOM: electro-optic modulator,
R: reflectivity.
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Figure 3 | Error syndrome measurement results. Left column: a random displacement error is imposed on channel 1. Right column: a random
displacement error is imposed on channel 9. A two-channel oscilloscope is used to measure the outputs of detectors 1 and 4, 2 and 3, 5 and 6 and 7
and 8. a–h, Output signal of detectors 1–8.

As the decoding stage merely inverts the encoding, the eight
ancilla modes will remain all ‘0’ in the absence of errors. In
the presence of an error in any one of the nine channels, the
measurement results of the decoded ancillae will lead to non-zero
components, containing sufficient information for identifying and

hence correcting the error (see Supplementary Information for
derivations and Table 1 for an error-syndromemap). Similar to the
qubit QEC scheme, where the conditional state after the syndrome
measurements becomes the original input state up to some discrete
Pauli errors, our conditional state coincides with the input state
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Figure 4 | Results of quantum-error-correction procedure. a, Single scan of a spectrum analyser with zero span mode (2 MHz centre frequency, 30 kHz
resolution bandwidth and 300 Hz video bandwidth), when a random phase-space displacement error is imposed on channel 1 (left) or channel 9 (right).
For the former (latter), the local oscillator phase of the homodyne detector is locked to the x (p) quadrature. In each case, four traces are shown for
comparison: (1) homodyne detector output without error correction (no feed-forward step); (2) error correction output without squeezing; (3) error
correction output with squeezing; (4) shot-noise level. b, Traces 2–4 averaged over 30 experiments.

up to some simple phase-space displacements. Thus, it remains
only to apply the appropriate (inverse) displacement operations
to correct the errors.

The detailed experimental set-up for our nine-wave-packet
QEC scheme is shown in Fig. 2. Eight squeezed vacua are
created by four optical parametric oscillators (OPOs), which have
two counter-propagating modes; thus, every OPO creates two
individual squeezed vacua. The squeezing level of each single-
mode squeezed vacuum state corresponds to roughly 1 dB below
shot noise. For pumping the OPOs, the second harmonic of a
continuous-wave Ti:sapphire laser output is used. The syndrome
measurements are carried out by means of homodyne detection
with near-unit efficiency.

To apply a single error, a coherent modulation is first generated
in a so-called error beam using an electro-optic modulator
(EOM) (‘modulated mode’). This beam is then superimposed
onto the selected mode or channel (‘target mode’) through a
high-reflectivity beam splitter21 with independently swept phase,
resulting in a quasi-random displacement error. The error-
correcting displacement operations (as determined by decoding and
measurement) are then carried out similarly, by means of an EOM

and a high-reflectivity beam splitter, but now with phase locking
between the modulated and target modes along either the x or
p axis, as appropriate.

Figure 3 shows some examples for error syndromemeasurement
results. Here, the input state is chosen to be a vacuum state. A
random displacement error in phase space is imposed on channel
1 (Fig. 3, left column) and on channel 9 (Fig. 3, right column). A
two-channel oscilloscope is used to measure the outputs of pairs
of detectors (1, 4), (2, 3), (5, 6) and (7, 8). Comparing the results of
Fig. 3, left column, with Table 1, one can identify an error occurring
in channel 1, because only detectors 1 and 2 have non-zero outputs.
The outputs from detectors 1 and 2 correspond to the desired x and
p displacements, respectively. Similarly, from Fig. 3, right column,
we can recognize that an error has occurred in channel 9. Here,
detectors 1, 4, 7 and 8 have non-zero outputs and the outputs of
detectors 1 and 4, as well as 7 and 8 have equal signs (distinguishing
it from the case of an error in channel 8, for which outcomes 7 and
8 have different signs).

Figure 4 shows two examples of QEC results, comparing output
states with and without error correction, and with and without
squeezing of the ancilla modes. In Fig. 4, left column, an error
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Table 2 | Output noise power of the QEC circuit in decibels,
relative to the shot-noise level.

Error
on
mode

Quadrature
of output

Output power
without SQ
(theory)

Output power
without SQ
(experiment)

Output power
with SQ
(experiment)

1 x 1.76 1.84±0.12 1.46±0.13
p 0.67 0.68±0.12 0.57±0.12

2 x 1.76 1.75±0.12 1.42±0.13
p 0.87 0.97±0.12 0.72±0.12

3 x 1.76 1.83±0.12 1.41±0.12
p 0.87 0.92±0.12 0.70±0.12

4 x 2.22 2.26±0.12 1.67±0.12
p 0.67 0.73±0.12 0.50±0.12

5 x 2.22 2.33±0.12 1.79±0.12
p 0.87 0.88±0.12 0.73±0.13

6 x 2.22 2.34±0.12 1.77±0.12
p 0.87 0.87±0.13 0.73±0.13

7 x 2.22 2.30±0.13 1.72±0.12
p 0.67 0.69±0.12 0.57±0.12

8 x 2.22 2.18±0.13 1.79±0.13
p 0.87 0.84±0.12 0.65±0.12

9 x 2.22 2.18±0.14 1.82±0.13
p 0.87 0.94±0.12 0.61±0.12

Perfect error correction therefore corresponds to 0 dB. SQ: squeezing.

was introduced in channel 1. The local oscillator phase of the
homodyne detector was tuned to detect the x quadrature of
channel 1. Similarly, in Fig. 4, right column, the error was
introduced in channel 9 and the local oscillator phase is locked
to the p quadrature. For ease of experimental implementation,
only the measurement outcomes of detectors 4 and 8 were
fed forward to the error correction step in the case of an
error in channel 9. In principle, using the combined outputs of
detectors 1 and 4 for x and detectors 7 and 8 for p would yield
even higher fidelities.

The quality of the error correction can be assessed through the
fidelity F = 〈ψin|ρ̂out|ψin〉, where |ψin〉 represents the input state
and ρ̂out corresponds to the output state of the error correction
circuit21–23. Here, the fidelity is calculated as

F =
2√

(1+4〈(1x̂out)2〉)(1+4〈(1p̂out)2〉)
(2)

where x̂out and p̂out are quadrature operators of the output field.
For example, in the case of an error in channel 1, the output
quadrature operators become

x̂out= x̂in−
1
√
2
x̂ (0)
an1e
−r1

p̂out= p̂in−
1
√
6
p̂(0)an2e

−r2

(3)

where x̂in, p̂in, x̂
(0)
an1 and p̂(0)an2 are quadrature operators of the input

field and the ancilla vacuummodes, and ri are squeezing parameters
for ancilla i. In the ideal case of ri→∞, unit fidelity is obtained,
with output states approaching the input states. For zero squeezing,

equation (3) yields an excess noise of 1/2 and 1/6 for the x and p
quadratures, corresponding to 1.76 and 0.67 dB of output powers,
respectively (see Table 2).

Equation (2) can be used to translate the measured noise level
values from Table 2 into fidelity values. Indeed, for every possible
error introduced (in any of the channels), the fidelity after error
correction exceeds the maximum values achievable for the scheme
in the absence of ancilla squeezing. For example, for an error
in mode 1, a fidelity of 0.88± 0.01 was achieved (exceeding the
‘classical’ cutoff of 0.86). Similarly, for an error in channel 9, we
obtain a fidelity of 0.86± 0.01, exceeding a cutoff of 0.82. (The
lower cutoff takes into consideration that only two of the four
non-zero components are used.) The improvement over quantum-
limited fidelities for errors in any one of the nine channels is
the key demonstration of this letter, providing indirect evidence
of entanglement-enhanced error correction (see Supplementary
Information). By comparison, in the complete absence of any error
correction, that is, without reversing displacement errors (including
the zero-squeezing case; for an application of such quantum-
limited error correction, see Supplementary Information, Part F),
fidelity values under 0.007± 0.001 were obtained. Nonetheless,
instead of this absolute improvement, it is the extent to which the
classical cutoff is exceeded that quantifies the effectiveness of the
non-classical resources.

In the experiment, evidence is obtained for an entanglement-
enhanced correction of displacement errors; a further increase
of the small enhancement of the current implementation would
require only higher squeezing levels of the resource states. The
scheme should be useful for applications where stochastic errors
occur such as free-space communication with fluctuating losses
and beam pointing errors17–20. The ability to implement QEC
in an optical network of this size represents a significant step
towards the manipulation and application of large-scale multi-
partite entanglement for quantum-information processing.
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