Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protecting entanglement between logical qubits via quantum error correction

Abstract

Entanglement is one of the most important resources in quantum computing, cryptography and sensing. However, entanglement is also fragile, and its potential advantages are hindered by decoherence effects in experiments. Here we experimentally realize entangled logical qubits with a bosonic quantum module by encoding quantum information into spatially separated microwave modes. The entanglement is protected by repetitive quantum error correction, which improves the coherence time of the entangled logical qubits compared with their unprotected counterparts by 45%. In addition, we demonstrate the violation of the Bell inequality by the purified entangled logical qubits via independent error detection and post-selection on each logical qubit, resulting in measured Bell signals that surpass the classical bound. The protected entangled logical qubits could be applied in future explorations of quantum foundations and applications of quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle and setup for ELQs.
Fig. 2: Performance of a single logical qubit.
Fig. 3: Performance of the entangled logical qubits.
Fig. 4: Bell test of the entangled logical qubits.

Similar content being viewed by others

Data availability

The data generated in this study have been deposited in the Figshare database under accession code https://doi.org/10.6084/m9.figshare.22759031 ref. 43.

Code availability

The code used for this study is available from the corresponding authors upon reasonable request.

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  CAS  Google Scholar 

  2. Bell, J. S. & Aspect, A. Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, 2004).

  3. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  4. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Hill, H. M. Physics Nobel honors foundational quantum entanglement experiments. Phys. Today 75, 14–17 (2022).

    ADS  CAS  Google Scholar 

  7. Vedral, V. Quantum entanglement. Nat. Phys. 10, 256–258 (2014).

    Article  CAS  Google Scholar 

  8. Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10–18 (2013).

    Article  CAS  Google Scholar 

  9. Laflorencie, N. Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. Preskill, J. The physics of quantum information. Preprint at http://arxiv.org/abs/2208.08064 (2022).

  11. Maldacena, J. & Susskind, L. Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013).

    Article  MathSciNet  Google Scholar 

  12. Nielsen, M. A. & Chuang, I. L., Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  13. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  PubMed  Google Scholar 

  16. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. Pirandola, S., Bardhan, B. R., Gehring, T., Weedbrook, C. & Lloyd, S. Advances in photonic quantum sensing. Nat. Photonics 12, 724–733 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Wang, C. et al. A Schrodinger cat living in two boxes. Science 352, 1087–1091 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Rosenblum, S. et al. A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 9, 652 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Erhard, A. et al. Entangling logical qubits with lattice surgery. Nature 589, 220–224 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://arxiv.org/abs/2208.01863 (2022).

  23. Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Blais, A., Girvin, S. M. & Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 16, 247 (2020).

    Article  CAS  Google Scholar 

  25. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  ADS  PubMed  Google Scholar 

  26. Reagor, M. et al. Ten milliseconds for aluminum cavities in the quantum regime. Appl. Phys. Lett. 102, 192604 (2013).

    Article  ADS  Google Scholar 

  27. Koch, J. et al. Charge insensitive qubit design from optimizing the Cooper-pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  28. Pfaff, W. et al. Controlled release of multiphoton quantum states from a microwave cavity memory. Nat. Phys. 13, 882–887 (2017).

    Article  CAS  Google Scholar 

  29. Axline, C. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    Article  CAS  Google Scholar 

  30. Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).

    Google Scholar 

  31. Hu, L. et al. Quantum error correction and universal gate set on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Article  CAS  Google Scholar 

  32. Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Nat. Phys. 16, 827–831 (2020).

    Article  CAS  Google Scholar 

  35. Wang, W. et al. Quantum-enhanced radiometry via approximate quantum error correction. Nat. Commun. 13, 3214 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature 616, 56–60 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum 2, 030321 (2021).

    Article  ADS  Google Scholar 

  38. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  39. Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381–1424 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  40. Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

  41. Cai, W., Ma, Y., Wang, W., Zou, C.-L. & Sun, L. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res. 1, 50–67 (2021).

    Article  Google Scholar 

  42. Joshi, A., Noh, K. & Gao, Y. Y. Quantum information processing with bosonic qubits in circuit qed. Quantum Sci. Technol. 6, 033001 (2021).

    Article  ADS  Google Scholar 

  43. Cai, W. et al. Protecting entanglement between logical qubits via quantum error correction. Figshare https://doi.org/10.6084/m9.figshare.22759031 (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 92165209, 11925404, 12204052, 92265210, 12061131011, 92365301, 11890704 and 92365206), Innovation Program for Quantum Science and Technology (2021ZD0300203 and 2021ZD0301800), Natural Science Foundation of Beijing (grant no. Z190012), Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation (BX2021167 and 2023M733409), grant no. 2019GQG1024 from the Institute for Guo Qiang, Tsinghua University and the National Key Research and Development Program of China (grant no. 2017YFA0304303). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

L.S. and C.-L.Z. conceived the experiments. W.C., X.M. and W.W. performed the experiments and analysed the data with the assistance of J.Z., Y.M., X.P., Z.H. and X.L. L.S. directed the project. C.-L.Z. provided theoretical support. W.C., X.M., W.W. and J.Z. performed the numerical simulations. W.C., H.W. and Y.S. fabricated the 3D cavity. G.X. and H.Y. fabricated the tantalum transmon qubits and provided further experimental support. W.C., X.M., W.W., J.Z., C.-L.Z. and L.S. wrote the paper with feedback from all authors.

Corresponding authors

Correspondence to Weiting Wang, Chang-Ling Zou or Luyan Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks William Livingston, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–9, Sects. I–VII, and References.

Source Data Fig. 2

Source data of Fig. 2a–d.

Source Data Fig. 3

Source data of Fig. 3a–e.

Source Data Fig. 4

Source data of Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Mu, X., Wang, W. et al. Protecting entanglement between logical qubits via quantum error correction. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02446-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing