Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fano resonances in photonics


Rapid progress in photonics and nanotechnology brings many examples of resonant optical phenomena associated with the physics of Fano resonances, with applications in optical switching and sensing. For successful design of photonic devices, it is important to gain deep insight into different resonant phenomena and understand their connection. Here, we review a broad range of resonant electromagnetic effects by using two effective coupled oscillators, including the Fano resonance, electromagnetically induced transparency, Kerker and Borrmann effects, and parity–time symmetry breaking. We discuss how to introduce the Fano parameter for describing a transition between two seemingly different spectroscopic signatures associated with asymmetric Fano and symmetric Lorentzian shapes. We also review the recent results on Fano resonances in dielectric nanostructures and metasurfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fano resonances in Mie scattering.
Figure 2: Phase diagram of different photonic resonances (Fano, EIT, Kerker, Borrmann, parity–time symmetric) in the damping constants (γ1, γ2) plane.
Figure 3: Fano parameter versus phase shift and the Fano response function.
Figure 4: Photonic systems and Fano parameter q.
Figure 5: Fano resonances in metasurfaces.
Figure 6: Recent examples of Fano resonances.


  1. 1

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  MATH  Google Scholar 

  2. 2

    Fano, U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro darco. Il Nuovo Cimento 12, 154–161 (1935).

    Google Scholar 

  3. 3

    Connerade, J.-P. & Lane, A. M. Interacting resonances in atomic spectroscopy. Rep. Prog. Phys. 51, 1439–1478 (1988).

    ADS  Google Scholar 

  4. 4

    Rybin, M. V., Filonov, D. S., Belov, P. A., Kivshar, Y. S. & Limonov, M. F. Switching from visibility to invisibility via Fano resonances: theory and experiment. Sci. Rep. 5, 8774 (2015).

    ADS  Google Scholar 

  5. 5

    Rybin, M. V. et al. Mie scattering as a cascade of Fano resonances. Opt. Express 21, 30107–30113 (2013).

    ADS  Google Scholar 

  6. 6

    Rybin, M. V. et al. Switchable invisibility of dielectric resonators. Phys. Rev. B 95, 165119 (2017).

    ADS  Google Scholar 

  7. 7

    Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Google Scholar 

  8. 8

    Borrmann, G. Die absorption von Röntgenstrahlen im fall der interferenz. Z. Phys. 127, 297–323 (1950).

    Google Scholar 

  9. 9

    Pettifer, R. F., Collins, S. P. & Laundy, D. Quadrupole transitions revealed by Borrmann spectroscopy. Nature 454, 196–199 (2008).

    ADS  Google Scholar 

  10. 10

    Vinogradov, A. P. et al. Inverse Borrmann effect in photonic crystals. Phys. Rev. B 80, 235106 (2009).

    ADS  Google Scholar 

  11. 11

    Peng, B., Özdemir, S. K., Chen, W., Nori, F. & Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014).

    ADS  Google Scholar 

  12. 12

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    ADS  Google Scholar 

  13. 13

    Yasir, K. A. & Liu, W.-M. Controlled electromagnetically induced transparency and Fano resonances in hybrid BEC-optomechanics. Sci. Rep. 6, 22651 (2016).

    ADS  Google Scholar 

  14. 14

    Han, S. et al. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials. Sci. Rep. 6, 20801 (2016).

    ADS  Google Scholar 

  15. 15

    Khunsin, W. et al. Quantitative and direct near-field analysis of plasmonic-induced transparency and the observation of a plasmonic breathing mode. ACS Nano 10, 2214–2224 (2016).

    Google Scholar 

  16. 16

    Fong, K. Y., Fan, L., Jiang, L., Han, X. & Tang, H. X. Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Phys. Rev. A 90, 051801 (2014).

    ADS  Google Scholar 

  17. 17

    Holfeld, C. P. et al. Fano resonances in semiconductor superlattices. Phys. Rev. Lett. 81, 874–877 (1998).

    ADS  Google Scholar 

  18. 18

    Fan, P., Yu, Z., Fan, S. & Brongersma, M. L. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 13, 471–475 (2014).

    ADS  Google Scholar 

  19. 19

    Limonov, M. F., Rykov, A. I., Tajima, S. & Yamanaka, A. Raman scattering study on fully oxygenated YBa2Cu3O7 single crystals: xy anisotropy in the superconductivity-induced effects. Phys. Rev. Lett. 80, 825–828 (1998).

    ADS  Google Scholar 

  20. 20

    Hadjiev, V. G. et al. Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10+δ. Phys. Rev. B 58, 1043–1050 (1998).

    ADS  Google Scholar 

  21. 21

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    ADS  Google Scholar 

  22. 22

    Soboleva, I. V., Moskalenko, V. V. & Fedyanin, A. A. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces. Phys. Rev. Lett. 108, 123901 (2012).

    ADS  Google Scholar 

  23. 23

    Yang, H. et al. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 6, 615–620 (2012).

    ADS  Google Scholar 

  24. 24

    Rybin, M. V. et al. Bragg scattering induces Fano resonance in photonic crystals. Photon. Nanostruct. Fundam. Appl. 8, 86–93 (2010).

    ADS  Google Scholar 

  25. 25

    Zhou, W. et al. Progress in 2D photonic crystal Fano resonance photonics. Progr. Quant. Electron. 38, 1–74 (2014).

    ADS  Google Scholar 

  26. 26

    Markoš, P. Fano resonances and band structure of two-dimensional photonic structures. Phys. Rev. A 92, 043814 (2015).

    ADS  Google Scholar 

  27. 27

    Chong, K. E. et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10, 1985–1990 (2014).

    MathSciNet  Google Scholar 

  28. 28

    Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    ADS  Google Scholar 

  29. 29

    Rahmani, M., Luk'yanchuk, B. & Hong, M. Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev. 7, 329–349 (2013).

    ADS  Google Scholar 

  30. 30

    Vercruysse, D. et al. Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014).

    Google Scholar 

  31. 31

    Hopkins, B., Poddubny, A. N., Miroshnichenko, A. E. & Kivshar, Y. S. Circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photon. Rev. 10, 137146 (2016).

    Google Scholar 

  32. 32

    Kraft, M., Luo, Y., Maier, S. A. & Pendry, J. B. Designing plasmonic gratings with transformation optics. Phys. Rev. X 5, 031029 (2015).

    Google Scholar 

  33. 33

    Hopkins, B., Filonov, D. S., Glybovski, S. B. & Miroshnichenko, A. E. Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers. Phys. Rev. B 92, 045433 (2015).

    ADS  Google Scholar 

  34. 34

    He, J., Fan, C., Ding, P., Zhu, S. & Liang, E. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements. Sci. Rep. 6, 20777 (2016).

    ADS  Google Scholar 

  35. 35

    Zhao, Q. et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

    ADS  Google Scholar 

  36. 36

    Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    ADS  Google Scholar 

  37. 37

    Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    ADS  Google Scholar 

  38. 38

    Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

    ADS  Google Scholar 

  39. 39

    Li, Y. et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

    ADS  Google Scholar 

  40. 40

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Lukyanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Google Scholar 

  41. 41

    Ghenuche, P. et al. Optical extinction in a single layer of nanorods. Phys. Rev. Lett. 109, 143903 (2012).

    ADS  Google Scholar 

  42. 42

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  43. 43

    Wang, F., Wei, Q.-H. & Htoon, H. Generation of steep phase anisotropy with zero-backscattering by arrays of coupled dielectric nano-resonators. Appl. Phys. Lett. 105, 121112 (2014).

    ADS  Google Scholar 

  44. 44

    Olson, J. et al. High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10, 1108–1117 (2016).

    Google Scholar 

  45. 45

    Ye, D., Lu, L., Joannopoulos, J. D., Soljačić, M. & Ran, L. Invisible metallic mesh. Proc. Natl Acad. Sci. USA 113, 2568–2572 (2016).

    ADS  Google Scholar 

  46. 46

    Chen, H., Liu, S., Zi, J. & Lin, Z. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles. ACS Nano 9, 1926–1935 (2015).

    ADS  Google Scholar 

  47. 47

    Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    ADS  Google Scholar 

  48. 48

    Monticone, F. & Alu, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

    ADS  Google Scholar 

  49. 49

    Sinev, I. S. et al. Mapping plasmonic topological states at the nanoscale. Nanoscale 7, 11904–11908 (2015).

    ADS  Google Scholar 

  50. 50

    Wu, C. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012).

    ADS  Google Scholar 

  51. 51

    Stern, L., Grajower, M. & Levy, U. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5, 4865 (2014).

    ADS  Google Scholar 

  52. 52

    Piao, X., Yu, S., Hong, J. & Park, N. Spectral separation of optical spin based on antisymmetric Fano resonances. Sci. Rep. 5, 16585 (2015).

    ADS  Google Scholar 

  53. 53

    Heeg, K. P. et al. Interferometric phase detection at X-ray energies via Fano resonance control. Phys. Rev. Lett. 114, 207401 (2015).

    ADS  Google Scholar 

  54. 54

    King, N. S. et al. Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing. ACS Nano 9, 10628–10636 (2015).

    Google Scholar 

  55. 55

    Song, M. et al. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8, 1635–1641 (2016).

    ADS  Google Scholar 

  56. 56

    Yu, Y., Xue, W., Semenova, E., Yvind, K. & Mork, J. Demonstration of a self-pulsing photonic crystal Fano laser. Nat. Photon. 11, 81–84 (2017).

    ADS  Google Scholar 

  57. 57

    Zhu, H., Yi, F. & Cubukcu, E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat. Photon. 10, 709–714 (2016).

    ADS  Google Scholar 

  58. 58

    Joe, Y. S., Satanin, A. M. & Kim, C. S. Classical analogy of Fano resonances. Phys. Script. 74, 259–266 (2006).

    ADS  Google Scholar 

  59. 59

    Verslegers, L., Yu, Z., Ruan, Z., Catrysse, P. B. & Fan, S. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures. Phys. Rev. Lett. 108, 083902 (2012).

    ADS  Google Scholar 

  60. 60

    Khanikaev, A. B., Wu, C. & Shvets, G. Fano-resonant metamaterials and their applications. Nanophotonics 2, 247–264 (2013).

    ADS  Google Scholar 

  61. 61

    Finch, M. F. & Lail, B. A. Multi-coupled resonant splitting with a nano-slot metasurface and PMMA phonons. In Proc. SPIE 9547, Plasmonics: Metallic Nanostructures and Their Optical Properties XIII 954710 (eds Boardman, A. D. & Tsai, D. P.) (SPIE, 2015).

    Google Scholar 

  62. 62

    Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

    Google Scholar 

  63. 63

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  64. 64

    Lamb, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

    ADS  Google Scholar 

  65. 65

    Novikov, V. B. & Murzina, T. V. Borrmann effect in photonic crystals. Opt. Lett. 42, 1389–1392 (2017).

    ADS  Google Scholar 

  66. 66

    Barreaux, J. L. P. et al. Narrowband and tunable anomalous transmission filters for spectral monitoring in the extreme ultraviolet wavelength region. Opt. Express 25, 1993–2008 (2017).

    ADS  Google Scholar 

  67. 67

    Rybin, M. V. et al. Fano resonances in antennas: general control over radiation patterns. Phys. Rev. B 88, 205106 (2013).

    ADS  Google Scholar 

  68. 68

    Kerker, M., Wang, D.-S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    ADS  Google Scholar 

  69. 69

    Geffrin, J.-M. et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

    ADS  Google Scholar 

  70. 70

    Niemi, T., Karilainen, A. O. & Tretyakov, S. A. Synthesis of polarization transformers. IEEE Trans. Antennas Propag. 61, 3102–3111 (2013).

    MathSciNet  ADS  MATH  Google Scholar 

  71. 71

    Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).

    Google Scholar 

  72. 72

    Yoshino, S., Oohata, G. & Mizoguchi, K. Dynamical Fano-like interference between Rabi oscillations and coherent phonons in a semiconductor microcavity system. Phys. Rev. Lett. 115, 157402 (2015).

    ADS  Google Scholar 

  73. 73

    Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    ADS  Google Scholar 

  74. 74

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    MathSciNet  ADS  MATH  Google Scholar 

  75. 75

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Google Scholar 

  76. 76

    Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Google Scholar 

  77. 77

    Harari, G. et al. Topological insulators in PT-symmetric lattices. In CLEO: 2015 paper FTh3D.3 (Optical Society of America, 2015).

    Google Scholar 

  78. 78

    Weimann, S. et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2016).

    ADS  Google Scholar 

  79. 79

    Zyablovsky, A. A., Vinogradov, A. P., Pukhov, A. A., Dorofeenko, A. V. & Lisyansky, A. A. PT symmetry in optics. Phys. Usp. 57, 1063–1082 (2014).

    ADS  Google Scholar 

  80. 80

    Suchkov, S. V. et al. Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photon. Rev. 10, 177–213 (2016).

    ADS  Google Scholar 

  81. 81

    Hopkins, B., Poddubny, A. N., Miroshnichenko, A. E. & Kivshar, Y. S. Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013).

    ADS  Google Scholar 

  82. 82

    Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    ADS  Google Scholar 

  83. 83

    Poddubny, A. N., Rybin, M. V., Limonov, M. F. & Kivshar, Y. S. Fano interference governs wave transport in disordered systems. Nat. Commun. 3, 914 (2012).

    ADS  Google Scholar 

  84. 84

    Tribelsky, M. I. & Miroshnichenko, A. E. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive index particles. Phys. Rev. A 93, 053837 (2016).

    ADS  Google Scholar 

  85. 85

    Kong, X. & Xiao, G. Fano resonance in high-permittivity dielectric spheres. J. Opt. Soc. Am. A 33, 707–711 (2016).

    ADS  Google Scholar 

  86. 86

    Rybin, M. V., Mingaleev, S. F., Limonov, M. F. & Kivshar, Y. S. Purcell effect and Lamb shift as interference phenomena. Sci. Rep. 6, 20599 (2016).

    ADS  Google Scholar 

  87. 87

    Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908).

    Google Scholar 

  88. 88

    Miroshnichenko, A. E. et al. Fano resonances: a discovery that was not made 100 years ago. Opt. Photon. News 19, 48 (2008).

    ADS  Google Scholar 

  89. 89

    Kong, X. & Xiao, G. Fano resonances in core-shell particles with high permittivity covers. In 2016 Progress in Electromagnetic Research Symposium (PIERS) 1715–1719 (PIERS, 2016).

    Google Scholar 

  90. 90

    Rybin, M. V. et al. Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009).

    ADS  Google Scholar 

  91. 91

    Pariente, J. A. et al. Percolation in photonic crystals revealed by Fano resonance. Preprint at (2016).

  92. 92

    Ricciardi, A. et al. Evidence of guided resonances in photonic quasicrystal slabs. Phys. Rev. B 84, 085135 (2011).

    ADS  Google Scholar 

  93. 93

    Limonov, M. F. & De La Rue, R. M. (eds) Optical Properties of Photonic Structures: Interplay of Order and Disorder (CRC Press, 2012).

    Google Scholar 

  94. 94

    Fan, S. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

    ADS  Google Scholar 

  95. 95

    Yu, P. et al. Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities. Appl. Phys. Lett. 103, 091104 (2013).

    ADS  Google Scholar 

  96. 96

    Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    ADS  Google Scholar 

  97. 97

    Campione, S. et al. Fano collective resonance as complex mode in a two-dimensional planar metasurface of plasmonic nanoparticles. Appl. Phys. Lett. 105, 191107 (2014).

    ADS  Google Scholar 

  98. 98

    Campione, S., Guclu, C., Ragan, R. & Capolino, F. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles. ACS Photon. 1, 254–260 (2014).

    Google Scholar 

  99. 99

    Sharac, N. et al. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates. Nanotechnology 27, 105302 (2016).

    ADS  Google Scholar 

  100. 100

    Aristov, A. I. et al. Laser-ablative engineering of phase singularities in plasmonic metamaterial arrays for biosensing applications. Appl. Phys. Lett. 104, 071101 (2014).

    ADS  Google Scholar 

  101. 101

    Paniagua-Domnguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

    ADS  Google Scholar 

  102. 102

    Dabidian, N. et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon. 2, 216–227 (2015).

    Google Scholar 

  103. 103

    Argyropoulos, C. Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene. Opt. Express 23, 23787–23797 (2015).

    ADS  Google Scholar 

  104. 104

    Mousavi, S. H. et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 13, 1111–1117 (2013).

    ADS  Google Scholar 

  105. 105

    Smirnova, D. A., Miroshnichenko, A. E., Kivshar, Y. S. & Khanikaev, A. B. Tunable nonlinear graphene metasurfaces. Phys. Rev. B 92, 161406 (2015).

    ADS  Google Scholar 

  106. 106

    Mousavi, S. H., Khanikaev, A. B., Allen, J., Allen, M. & Shvets, G. Gyromagnetically induced transparency of metasurfaces. Phys. Rev. Lett. 112, 117402 (2014).

    ADS  Google Scholar 

  107. 107

    Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    ADS  Google Scholar 

  108. 108

    Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    ADS  Google Scholar 

  109. 109

    Dhouibi, A., Burokur, S. N., Lupu, A., de Lustrac, A. & Priou, A. Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms. Appl. Phys. Lett. 103, 184103 (2013).

    ADS  Google Scholar 

  110. 110

    Wang, F., Wang, Z. & Shi, J. Theoretical study of high-Q Fano resonance and extrinsic chirality in an ultrathin Babinet-inverted metasurface. J. Appl. Phys. 116, 153506 (2014).

    ADS  Google Scholar 

  111. 111

    Monticone, F. & Alu, A. Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B 23, 047809 (2014).

    Google Scholar 

  112. 112

    Ott, C. et al. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516, 374–378 (2014).

    ADS  Google Scholar 

  113. 113

    Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    ADS  Google Scholar 

  114. 114

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Google Scholar 

  115. 115

    Tung, L.-C. et al. Magnetoinfrared spectroscopic study of thin Bi2Te3 single crystals. Phys. Rev. B 93, 085140 (2016).

    ADS  Google Scholar 

  116. 116

    Autore, M. et al. Plasmon–phonon interactions in topological insulator microrings. Adv. Opt. Mater. 3, 1257–1263 (2015).

    Google Scholar 

  117. 117

    Sim, S. et al. Ultrafast terahertz dynamics of hot Dirac-electron surface scattering in the topological insulator Bi2Se3 . Phys. Rev. B 89, 165137 (2014).

    ADS  Google Scholar 

  118. 118

    Glinka, Y. D., Babakiray, S., Holcomb, M. B. & Lederman, D. Effect of Mn doping on ultrafast carrier dynamics in thin films of the topological insulator Bi2Se3 . J. Phys. Condens. Matter 28, 165601 (2016).

    ADS  Google Scholar 

  119. 119

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Google Scholar 

  120. 120

    Atherton, T. J. et al. Topological modes in one-dimensional solids and photonic crystals. Phys. Rev. B 93, 125106 (2016).

    ADS  Google Scholar 

  121. 121

    Shorokhov, A. S. et al. Multifold enhancement of third-harmonic generation in dielectric nanoparticles driven by magnetic Fano resonances. Nano Lett. 16, 4857–4861 (2016).

    ADS  Google Scholar 

  122. 122

    Luk'yanchuk, B. S., Miroshnichenko, A. E. & Kivshar, Y. S. Fano resonances and topological optics: an interplay of far-and near-field interference phenomena. J. Opt. 15, 073001 (2013).

    ADS  Google Scholar 

Download references


We thank P. Belov, S. Flach, B. Hopkins, A. A. Kaplyansky, B. Luk'yanchuk and M. Scully for useful discussions and suggestions, and D. Powell for critical reading of the manuscript. We acknowledge financial support from the Russian Science Foundation (grant 15-12-00040) and the Australian Research Council.

Author information



Corresponding author

Correspondence to Mikhail V. Rybin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Limonov, M., Rybin, M., Poddubny, A. et al. Fano resonances in photonics. Nature Photon 11, 543–554 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing