Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optomechanical self-structuring in a cold atomic gas

Subjects

Abstract

The rapidly developing field of optomechanics aims at the combined control of optical and mechanical modes1,2,3. In cold atoms, the spontaneous emergence of spatial structures due to optomechanical back-action has been observed in one dimension in optical cavities3,4,5,6,7,8 or highly anisotropic samples9. Extensions to higher dimensions that aim to exploit multimode configurations have been suggested theoretically10,11,12,13,14,15,16. Here, we describe a simple experiment with many spatial degrees of freedom, in which two continuous symmetries—rotation and translation in the plane orthogonal to a pump beam axis—are spontaneously broken. We observe the simultaneous long-range spatial structuring (with hexagonal symmetry) of the density of a cold atomic cloud and of the pump optical field, with adjustable length scale. Being based on coherent phenomena (diffraction and the dipole force), this scheme can potentially be extended to quantum degenerate gases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-organization scheme and experimental set-up.
Figure 2: Observation of self-organization.
Figure 3: Pattern temporal lifetime and spatial period.
Figure 4: Optomechanical versus two-level nonlinearity.

References

  1. Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose–Einstein condensate. Science 322, 235–238 (2008).

    Article  ADS  Google Scholar 

  2. Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009).

    Article  ADS  Google Scholar 

  3. Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article  ADS  Google Scholar 

  4. Bonifacio, R. & DeSalvo, L. Collective atomic recoil laser (CARL) optical gain without inversion by collective atomic recoil and self-bunching of 2-level atoms. Nucl. Instrum. Methods Phys. Res. Sect. A 341, 360–362 (1994).

    Article  ADS  Google Scholar 

  5. Domokos, P. & Ritsch, H. Collective cooling and self-organization of atoms in a cavity. Phys. Rev. Lett. 89, 253003 (2002).

    Article  ADS  Google Scholar 

  6. Black, A. T., Chan, H. W. & Vuletic, V. Observation of collective friction forces due to spatial self-organization of atoms: from Rayleigh to Bragg scattering. Phys. Rev. Lett. 91, 203001 (2003).

    Article  ADS  Google Scholar 

  7. Von Cube, C. et al. Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing. Phys. Rev. Lett. 93, 083601 (2004).

    Article  ADS  Google Scholar 

  8. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1307 (2010).

    Article  ADS  Google Scholar 

  9. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–574 (1999).

    Article  Google Scholar 

  10. Greenberg, J. A., Schmittberger, B. L. & Gauthier, D. Bunching-induced optical nonlinearity and instability in cold atoms. Opt. Express 19, 22535 (2011).

    Article  ADS  Google Scholar 

  11. Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Emergent crystallinity and frustration with Bose-Einstein condensates in multimode cavities. Nature Phys. 5, 845–850 (2009).

    Article  ADS  Google Scholar 

  12. Gopalakrishnan, S., Lev, B. L. & Goldbart, P. M. Atom-light crystallization of Bose–Einstein condensates in multimode cavities: nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A 82, 043612 (2010).

    Article  ADS  Google Scholar 

  13. Saffman, M. Self-induced dipole force and filamentation instability of a matter wave. Phys. Rev. Lett. 81, 65–68 (1998).

    Article  ADS  Google Scholar 

  14. Muradyan, G. A., Wang, Y., Williams, W. & Saffman, M. in Nonlinear Guided Waves, OSA Topical Meeting Technical Digest, paper ThB29 (Optical Society of America, 2005).

    Google Scholar 

  15. Tesio, E., Robb, G. R. M., Ackemann, T., Firth, W. J. & Oppo, G.-L. Spontaneous optomechanical pattern formation in cold atoms. Phys. Rev. A 86, 031801(R) (2012).

    Article  ADS  Google Scholar 

  16. Mendonça, J. T. & Kaiser, R. Photon bubbles in ultracold matter. Phys. Rev. Lett. 108, 033001 (2012).

    Article  ADS  Google Scholar 

  17. Verkerk, P. et al. Designing optical lattices: an investigation with cesium atoms. Europhys. Lett. 26, 171–176 (1994).

    Article  ADS  Google Scholar 

  18. Brazowskii, S. A. Phase transition of an isotropic system to an nonuniform state. Sov. Phys. JETP 41, 85–89 (1975).

    ADS  Google Scholar 

  19. Grynberg, G. Mirrorless four-wave mixing oscillation in atomic vapors. Opt. Commun. 66, 321–324 (1988).

    Article  ADS  Google Scholar 

  20. Ackemann, T. & Lange, W. Non- and nearly hexagonal patterns in sodium vapor generated by single-mirror feedback. Phys. Rev. A 50, R4468–R4471 (1994).

    Article  ADS  Google Scholar 

  21. Dawes, A. M. C., Illing, L., Clark, S. M. & Gauthier, D. J. All-optical switching in rubidium vapor. Science 308, 672–674 (2005).

    Article  ADS  Google Scholar 

  22. Smith, P. W., Ashkin, A. & Tomlinson, W. Four-wave mixing in an artificial Kerr medium. Opt. Lett. 6, 284–286 (1981).

    Article  ADS  Google Scholar 

  23. Reece, P. J., Wright, E. M. & Dholakia, K. Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. Phys. Rev. Lett. 98, 203902 (2007).

    Article  ADS  Google Scholar 

  24. Man, W. et al. Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities. Phys. Rev. Lett. 111, 218302 (2013).

    Article  ADS  Google Scholar 

  25. Gupta, S., Moore, K. L., Murch, K. W. & Stamper-Kurn, D. M. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007).

    Article  ADS  Google Scholar 

  26. Firth, W. J. Spatial instabilities in a Kerr medium with single feedback mirror. J. Mod. Opt. 37, 151–153 (1990).

    Article  ADS  Google Scholar 

  27. D'Alessandro, G. & Firth, W. J. Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror. Phys. Rev. Lett. 66, 2597–2600 (1991).

    Article  ADS  Google Scholar 

  28. Ciaramella, E., Tamburrini, M. & Santamato, E. Talbot assisted hexagonal beam patterning in a thin liquid crystal film with a single feedback mirror at negative distance. Appl. Phys. Lett. 63, 1604–1606 (1993).

    Article  ADS  Google Scholar 

  29. Tesio, E., Robb, G. R. M., Ackemann, T., Firth, W. J. & Oppo, G.-L. Kinetic theory for transverse opto-mechanical instabilities. Phys. Rev. Lett. 112, 043901 (2014).

    Article  ADS  Google Scholar 

  30. Ruiz-Rivas, J., Navarrete-Benlloch, C., Patera, G., Roldán, E. & de Valcárcel, G. J. Dissipative structures in optomechanical cavities. Preprint at http://arXiv.org/abs/1212.1364 (2012).

  31. Tesio, E., Robb, G. R. M., Ackemann, T., Firth, W. J. & Oppo, G.-L. Dissipative solitons in the coupled dynamics of light and cold atoms. Opt. Express 21, 26144 (2013).

    Article  ADS  Google Scholar 

  32. Labeyrie, G. & Bortolozzo, U. Light self-trapping in a large cloud of cold atoms. Opt. Lett. 36, 2158–2160 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Strathclyde group is grateful for support by the Leverhulme Trust and the Engineering and Physical Sciences Research Council. The collaboration between the two groups is supported by the Royal Society (London). The Sophia Antipolis group acknowledges support from Centre National de la Recherche Scientifique, Université de Nice-Sophia Antipolis and Région Provence-Alpes-Côte d'Azur.

Author information

Authors and Affiliations

Authors

Contributions

G.L. led the experimental effort and performed the experiment with the help of P.G. They were joined by T.A., A.A. and R.K. in data analysis. E.T., G.R., G.L.O. and W.J.F. performed the theoretical and computational analysis. T.A. conceived the experiment and coordinated the joint efforts with R.K. All authors contributed to the discussion and interpretation of results and commented on the manuscript.

Corresponding authors

Correspondence to G. Labeyrie or T. Ackemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 545 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labeyrie, G., Tesio, E., Gomes, P. et al. Optomechanical self-structuring in a cold atomic gas. Nature Photon 8, 321–325 (2014). https://doi.org/10.1038/nphoton.2014.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing