Review Article | Published:

Attosecond molecular dynamics: fact or fiction?

Nature Photonics volume 8, pages 195204 (2014) | Download Citation

Abstract

The emerging application of attosecond techniques to molecular systems allows the role of electronic coherence in the control of chemical reactions to be investigated. Prompt ionization of molecules by an attosecond pulse may induce charge migration across a molecular structure on attosecond to few-femtosecond timescales, thereby possibly determining the subsequent relaxation pathways that a molecule may take. We discuss how proposals for this 'charge-directed reactivity' fit within the current understanding of quantum control and review the current state of the art of attosecond molecular science. Specifically, we review the role of electronic coherence and coupling of the electronic and nuclear degrees of freedom in high-harmonic spectroscopy and in the first attosecond pump–probe experiments on molecular systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Zur Quantentheorie der Molekeln. Annalen der Physik 389, 457–484 (1927).

  2. 2.

    Chemical reaction dynamics beyond the Born-Oppenheimer approximation. Annu. Rev. Phys. Chem. 49, 125–171 (1998).

  3. 3.

    The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Math. Proc. Cambridge Phil. Soc. 24, 89–110 (1928).

  4. 4.

    & Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63, 325–352 (2012).

  5. 5.

    , , , & The role of πσ* excited states in the photodissociation of heteroaromatic molecules. Science 312, 1637–1640 (2006).

  6. 6.

    et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

  7. 7.

    et al. Attosecond metrology. Nature 414, 509–513 (2001).

  8. 8.

    , , & Electronic control of site selective reactivity: a model combining charge migration and dissociation. J. Phys. Chem. A 103, 10149–10158 (1999).

  9. 9.

    , , , & Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 99, 11255–11265 (1995).

  10. 10.

    & Migration of holes: formalism, mechanisms, and illustrative applications. J. Chem. Phys. 118, 3983 (2003).

  11. 11.

    & An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

  12. 12.

    & One photon mode selective control of reactions by rapid or shaped laser pulses: an emperor without clothes. Chem. Phys. 139, 221–228 (1989).

  13. 13.

    et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

  14. 14.

    , , & Femtosecond dynamics after ionization: 2-phenylethyl-N, N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. J. Phys. Chem. A 109, 8074–8080 (2005).

  15. 15.

    et al. Highly efficient charge transfer in peptide cations in the gas phase: threshold effects and mechanism. J. Phys. Chem. 100, 18567–18585 (1996).

  16. 16.

    , , & Nonstationary electronic states and site-selective reactivity. J. Phys. Chem. A 101, 7702–7710 (1997).

  17. 17.

    & Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

  18. 18.

    , & Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414, 100–105 (2013).

  19. 19.

    & Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

  20. 20.

    , & Electron correlation as the driving force for charge transfer: charge migration following ionization in N-methyl acetamide. J. Phys. Chem. A 109, 409–414 (2005).

  21. 21.

    & Charge migration in different conformers of glycine: the role of nuclear geometry. Chem. Phys. 338, 320–328 (2007).

  22. 22.

    et al. Probing molecular dynamics with attosecond resolution using correlated wave packet pairs. Nature 421, 826–829 (2003).

  23. 23.

    et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

  24. 24.

    Molecular imaging using recolliding electrons. J. Phys. B 40, R135 (2007).

  25. 25.

    Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  26. 26.

    , , & Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

  27. 27.

    Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

  28. 28.

    Atomic antenna. JETP Lett. 45, 404–406 (1987).

  29. 29.

    et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).

  30. 30.

    , , & Reading diffraction images in strong field ionization of diatomic molecules. J. Phys. B 37, L243–L250 (2004).

  31. 31.

    , , , & Interference effects in high-order harmonic generation with molecules. Phys. Rev. A 66, 023805 (2002).

  32. 32.

    et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

  33. 33.

    , , , & Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

  34. 34.

    et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

  35. 35.

    , , , & Strong-field rescattering physics—self-imaging of a molecule by its own electrons. J. Phys. B 43, 122001 (2010).

  36. 36.

    , , & Analytic confirmation that the factorized formula for harmonic generation involves the exact photorecombination cross section. Phys. Rev. A 83, 043416 (2011).

  37. 37.

    et al. Analytic description of the high-energy plateau in harmonic generation by atoms: can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

  38. 38.

    et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

  39. 39.

    et al. Direct visualization of laser-driven electron multiple scattering and tunneling distance in strong-field ionization. Phys. Rev. Lett. 109, 073004 (2012).

  40. 40.

    et al. Scaling laws for photoelectron holography in the midinfrared wavelength regime. Phys. Rev. Lett. 109, 013002 (2012).

  41. 41.

    et al. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses. Phys. Rev. A 84, 043420 (2011).

  42. 42.

    et al. Interference carpets in above-threshold ionization: from the Coulomb-free to the Coulomb-dominated regime. Phys. Rev. Lett. 108, 223601 (2012).

  43. 43.

    et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

  44. 44.

    et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nature Phys. 8, 76–80 (2012).

  45. 45.

    et al. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit. Phys. Rev. Lett. 109, 083002 (2012).

  46. 46.

    et al. Breakdown of the independent electron approximation in sequential double ionization. New J. Phys. 13, 093008 (2011).

  47. 47.

    et al. Probing nonadiabatic effects in strong-field tunnel ionization. Phys. Rev. Lett. 111, 103003 (2013).

  48. 48.

    et al. Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories. Phys. Rev. Lett. 84, 3791–3794 (2000).

  49. 49.

    , , & Coulomb asymmetry in above-threshold ionization. Phys. Rev. Lett. 93, 233002 (2004).

  50. 50.

    , & Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses. J. Phys. B 42, 161001 (2009).

  51. 51.

    , & Energy and momentum spectra of photoelectrons under conditions of ionization by strong laser radiation (the case of elliptic polarization). J. Exp. Theoret. Phys. 92, 777–788 (2001).

  52. 52.

    & Nonadiabatic tunneling in circularly polarized laser fields: physical picture and calculations. Phys. Rev. A 84, 063415 (2011).

  53. 53.

    & Time-dependent analytical R-matrix approach for strong-field dynamics. I. One-electron systems. Phys. Rev. A 86, 043408 (2012).

  54. 54.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

  55. 55.

    & High-order harmonic-generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

  56. 56.

    , & Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

  57. 57.

    , & Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

  58. 58.

    et al. Feynman's path-integral approach for intense-laser-atom interactions. Science 292, 902–905 (2001).

  59. 59.

    et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

  60. 60.

    et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

  61. 61.

    , , & High harmonic generation from multiple orbitals in N2. Science 322, 1232–1235 (2008).

  62. 62.

    , , , & Atomic wavefunctions probed through strong-field light–matter interaction. Nature Phys. 5, 412–416 (2009).

  63. 63.

    et al. High harmonic spectroscopy of multichannel dynamics in strong-field ionization. Phys. Rev. Lett. 104, 213601 (2010).

  64. 64.

    et al. Attosecond circular dichroism spectroscopy of polyatomic molecules. Phys. Rev. Lett. 102, 063601 (2009).

  65. 65.

    et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–206 (2010).

  66. 66.

    et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys. 7, 464–467 (2011).

  67. 67.

    , , , & Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

  68. 68.

    , , & High-harmonic homodyne detection of the ultrafast dissociation of Br2 molecules. Phys. Rev. Lett. 105, 103002 (2010).

  69. 69.

    et al. Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy. Science 334, 208–212 (2011).

  70. 70.

    et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

  71. 71.

    , & High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics. Phys. Rev. Lett. 109, 233903 (2012).

  72. 72.

    High-order harmonic generation by excited helium: the atomic polarization effect. Phys. Rev. A 69, 043406 (2004).

  73. 73.

    et al. Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100, 143902 (2008).

  74. 74.

    et al. Spatio-spectral analysis of ionization times in high-harmonic generation. Chem. Phys. 414, 176–183 (2013).

  75. 75.

    , , , & Strong field quantum path control using attosecond pulse trains. Phys. Rev. Lett. 92, 023003 (2004).

  76. 76.

    et al. Enhancement of high-order harmonic emission using attosecond pulse trains. Laser Phys. 15, 899–902 (2005).

  77. 77.

    et al. Attosecond control of electron–ion recollision in high harmonic generation. New J. Phys. 13, 033002 (2011).

  78. 78.

    , , , & High-order harmonic generation spectroscopy of correlation-driven electron hole dynamics. Phys. Rev. Lett. 111, 123002 (2013).

  79. 79.

    & Opportunities for sub-laser-cycle spectroscopy in condensed phase. Chem. Phys. 414, 3–9 (2013).

  80. 80.

    & Yu. Role of subcycle transition dynamics in high-order-harmonic generation in periodic structures. Phys. Rev. A 87, 063842 (2013).

  81. 81.

    et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).

  82. 82.

    et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A 85, 043836 (2012).

  83. 83.

    et al. Optical detection of attosecond ionization induced by a few-cycle laser field in a transparent dielectric material. Phys. Rev. Lett. 106, 147401 (2011).

  84. 84.

    et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

  85. 85.

    & Multidimensional high harmonic spectroscopy: a semi-classical perspective on measuring multielectron rearrangement upon ionization. J. Phys. B 46, 171001 (2013).

  86. 86.

    , & Manipulating quantum paths for novel attosecond measurement methods. Nature Photon. 8, 187–194 (2014).

  87. 87.

    et al. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science 335, 1336–1340 (2012).

  88. 88.

    et al. Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A 81, 051802 (2010).

  89. 89.

    et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008).

  90. 90.

    & Attosecond correlation dynamics during electron tunnelling from molecules. J. Phys. B 43, 161002 (2010).

  91. 91.

    , & & Time-dependent analytical R-matrix approach for strong-field dynamics. II. Many-electron systems. Phys. Rev. A 86, 043409 (2012).

  92. 92.

    & Single-photon laser-enabled Auger spectroscopy for measuring attosecond electron-hole dynamics. Phys. Rev. Lett. 111, 083004 (2013).

  93. 93.

    Attosecond probing of vibrational dynamics with high-harmonic generation. Phys. Rev. Lett. 94, 053004 (2005).

  94. 94.

    et al. Tracing molecular dynamics at the femto-/atto-second boundary through extreme-ultraviolet pump-probe spectroscopy. Preprint at (2013).

  95. 95.

    , & Focusing coherent soft-x-ray radiation to a micrometer spot size with an intensity of 1014 W/cm2. Opt. Lett. 29, 1927–1929 (2004).

  96. 96.

    et al. Revealing quantum path details in high-field physics. Preprint at (2013).

  97. 97.

    et al. Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser. Appl. Phys. Lett. 102, 201104 (2013).

  98. 98.

    et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

  99. 99.

    et al. Atomic transient recorder. Nature 427, 817–821 (2004).

  100. 100.

    et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

  101. 101.

    et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

  102. 102.

    et al. Time-resolved atomic inner-shell spectroscopy. Nature 419, 803–807 (2002).

  103. 103.

    et al. Delay in photoemission. Science 328, 1658–1662 (2010).

  104. 104.

    et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

  105. 105.

    et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

  106. 106.

    , , , & Decoherence in attosecond photoionization. Phys. Rev. Lett. 106, 053003 (2011).

  107. 107.

    , , & A semi-classical model of attosecond electron localization in dissociative ionization of hydrogen. Phys. Chem. Chem. Phys. 13, 8647–8652 (2011).

  108. 108.

    et al. Attosecond control of dissociative ionization of O2 molecules. Phys. Rev. A 84, 063412 (2011).

  109. 109.

    et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).

  110. 110.

    & Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett. 87, 153902 (2001).

  111. 111.

    & Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

  112. 112.

    et al. Probing time-dependent molecular dipoles on the attosecond time scale. Phys. Rev. Lett. 111, 033001 (2013).

  113. 113.

    , , , & Extreme-ultraviolet pump–probe studies of one-femtosecond-scale electron dynamics. Nature Phys. 7, 781–784 (2011).

  114. 114.

    , , & Clocking ultrafast wave packet dynamics in molecules through UV-induced symmetry breaking. Phys. Rev. Lett. 108, 063009 (2012).

  115. 115.

    et al. Attosecond control in photoionization of hydrogen molecules. Phys. Rev. Lett. 107, 043002 (2011).

  116. 116.

    et al. Attosecond time-resolved electron dynamics in the hydrogen molecule. IEEE J. Sel. Top. Quantum Electron. 18, 520–530 (2012).

  117. 117.

    et al. Autoionization and ultrafast relaxation dynamics of highly excited states in N2. Phys. Rev. A 86, 043404 (2012).

  118. 118.

    & Multidimensional snapshots of chemical dynamics. Science 305, 1575–1577 (2004).

  119. 119.

    et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463 (2003).

  120. 120.

    et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

  121. 121.

    et al. Electron localization involving doubly excited states in broadband extreme ultraviolet ionization of H2. Phys. Rev. Lett. 110, 213002 (2013).

  122. 122.

    et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

  123. 123.

    , , & Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection. J. Chem. Phys. 139, 044110 (2013).

  124. 124.

    , & Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000).

  125. 125.

    et al. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules. Phys. Rev. Lett. 109, 243001 (2012).

  126. 126.

    , & Time-resolved photoelectron spectroscopy: from wavepackets to observables. Phys. Chem. Chem. Phys. 13, 18447–18467 (2011).

  127. 127.

    et al. Soft X-ray-driven femtosecond molecular dynamics. Science 317, 1374–1378 (2007).

  128. 128.

    et al. Observing the creation of electronic Feshbach resonances in soft X-ray-induced O2 dissociation. Science 322, 1081–1085 (2008).

  129. 129.

    , , , & Shake-up and shake-off excitations with associated electron losses in X-ray studies of proteins. Protein Sci. 10, 2480–2484 (2001).

  130. 130.

    , , , & Exploring local currents in molecular junctions. Nature Chem. 2, 223–228 (2010).

  131. 131.

    et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

  132. 132.

    et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

  133. 133.

    et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005).

  134. 134.

    Attosecond imaging. Phys. Chem. Chem. Phys. 16, 2775–2789 (2014).

Download references

Author information

Affiliations

  1. Institut Lumière Matière (ILM), CNRS, Université Lyon 1, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France

    • Franck Lépine
  2. Max-Born Institute (MBI), Max-Born Strasse 2A, 12489 Berlin, Germany

    • Misha Y. Ivanov
    •  & Marc J. J. Vrakking

Authors

  1. Search for Franck Lépine in:

  2. Search for Misha Y. Ivanov in:

  3. Search for Marc J. J. Vrakking in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Marc J. J. Vrakking.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2014.25

Further reading