Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of laser power-efficiency by control of spatial hole burning interactions

Abstract

The laser is an out-of-equilibrium nonlinear wave system where the interplay of the cavity geometry and nonlinear wave interactions mediated by the gain medium determines the self-organized oscillation frequencies and the associated spatial field patterns. In the steady state, a constant energy flux flows through the laser from the pump to the far field, with the ratio of the total output power to the input power determining the power-efficiency. Although nonlinear wave interactions have been modelled and well understood since the early days of laser theory, their impact on the power-efficiency of a laser system is poorly understood. Here, we show that spatial hole burning interactions generally decrease the power-efficiency. We then demonstrate how spatial hole burning interactions can be controlled by a spatially tailored pump profile, thereby boosting the power-efficiency, in some cases by orders of magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of different optical pumping schemes and their corresponding emission patterns.
Figure 2: Characteristics of the optimally outcoupled mode.
Figure 3: Characteristics of a laser with nc = 3.3 + 10–4i, ωaR = 20.28 and γ.

Similar content being viewed by others

References

  1. Bai, Y., Bandyopadhyay, N., Tsao, S., Slivken, S. & Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011).

    Article  ADS  Google Scholar 

  2. Fan, T. Y. et al. Cryogenic Yb3+-doped solid-state lasers. IEEE J. Select. Top. Quantum Electron. 13, 448–459 (2007).

    Article  ADS  Google Scholar 

  3. Faist, J. Wallplug efficiency of quantum cascade lasers: critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).

    Article  ADS  Google Scholar 

  4. Gmachl, C. et al. High-power directional emission from microlasers with chaotic resonators. Science 280, 1556–1564 (1998).

    Article  ADS  Google Scholar 

  5. Kneissl, M. et al. Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. Appl. Phys. Lett. 84, 2485–2487 (2004).

    Article  ADS  Google Scholar 

  6. Shakoor, A. et al. Room temperature all-silicon photonic crystal nanocavity light-emitting diode at sub-bandgap wavelengths. Laser Photon. Rev. 7, 114–121 (2013).

    Article  ADS  Google Scholar 

  7. Shambat, G. et al. Electrically driven photonic crystal nanocavity devices. IEEE J. Sel. Top. Quantum Electron. 18, 1700–1710 (2012).

    Article  ADS  Google Scholar 

  8. Rex, N. B., Chang, R. K. & Guido, L. J. Threshold lowering in GaN micropillar lasers by means of spatially selective optical pumping. IEEE Photon. Technol. Lett. 13, 1–3 (2002).

    Article  ADS  Google Scholar 

  9. Chern, G. D. et al. Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett. 83, 1710–1712 (2003).

    Article  ADS  Google Scholar 

  10. Türeci, H. E., Stone, A. D. & Collier, B. Self-consistent multi-mode lasing theory for complex or random lasing media. Phys. Rev. A 74, 043822 (2006).

    Article  ADS  Google Scholar 

  11. Türeci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  ADS  Google Scholar 

  12. Ge, L., Chong, Y. D. & Stone, A. D. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A 82, 063824 (2010).

    Article  ADS  Google Scholar 

  13. Ching, E. S. C. et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys. 70, 1545–1554 (1998).

    Article  ADS  Google Scholar 

  14. Siegman, A. E. in Lasers Ch. 12 (University Science Books, 1986).

    Google Scholar 

  15. Milonni, P. W. & Eberly, J. H. in Laser Physics 3rd edn, Ch. 5 (Wiley, 2010).

    Book  Google Scholar 

  16. Rigrod, W. W. Saturation effects in high-gain lasers. J. Appl. Phys. 36, 2487–2490 (1965).

    Article  ADS  Google Scholar 

  17. Yariv, A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36, 321–322 (2000).

    Article  Google Scholar 

  18. Min, B. et al. Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip. Phys. Rev. A. 70, 033803 (2004).

    Article  ADS  Google Scholar 

  19. Srinivasan, K. et al. Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots. Opt. Express 14, 1094–1105 (2006).

    Article  ADS  Google Scholar 

  20. Kwon, T.-Y. et al. Lasing modes in a spiral-shaped dielectric microcavity. Opt. Lett. 31, 1250–1252 (2006).

    Article  ADS  Google Scholar 

  21. Fukushima, T. et al. Ring and axis mode lasing in quasi-stadium laser diodes with concentric end mirrors. Opt. Lett. 27, 1430–1432 (2002).

    Article  ADS  Google Scholar 

  22. Shinohara, S. et al. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett. 104, 163902 (2010).

    Article  ADS  Google Scholar 

  23. Wu, X. et al. Random lasing in weakly scattering systems. Phys. Rev. A 74, 053812 (2006).

    Article  ADS  Google Scholar 

  24. Ge, L. Steady-State Ab Initio Laser Theory and its Applications in Random and Complex Media. PhD thesis, Yale Univ. (2010).

    Google Scholar 

  25. Hisch, T., Liertzer, M., Pogany, D., Mintert, F. & Rotter, S. Pump-controlled directional light emission from random lasers. Phys. Rev. Lett. 111, 023902 (2013).

    Article  ADS  Google Scholar 

  26. Bachelard, N., Andreasen, J., Gigan, S. & Sebbah, P. Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012).

    Article  ADS  Google Scholar 

  27. Ge, L., Chong, Y. D., Rotter, S., Türeci, H. E. & Stone, A. D. Unconventional modes in lasers with spatially varying gain and loss. Phys. Rev. A 84, 023820 (2011).

    Article  ADS  Google Scholar 

  28. Andreason, J., Vanneste, C., Ge, L. & Cao, H. Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems. Phys. Rev. A 81, 043818 (2010).

    Article  ADS  Google Scholar 

  29. Nöckel, J. U. Resonances in Nonintegrable Open Systems. PhD thesis, Yale Univ. (1997).

    Google Scholar 

  30. Khurgin, J. B. et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl. Phys. Lett. 94, 091101 (2009).

    Article  ADS  Google Scholar 

  31. Liu, P. Q. et al. Highly power-efficient quantum cascade lasers. Nature Photon. 4, 95–98 (2010).

    Article  ADS  Google Scholar 

  32. Bai, Y., Slivken, S., Kuboya, S., Darvish, S. R. & Razeghi, M. Quantum cascade lasers that emit more light than heat. Nature Photon. 4, 99–102 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Aung, H. Cao, Y. Dikmelik, D. Gerace, C. Gmachl, L. Le, A. D. Stone and I. Trofimov for discussions. This work is supported by MIRTHE NSF EEC-0540832 and DARPA grant no. N66001-11-1-4162.

Author information

Authors and Affiliations

Authors

Contributions

L.G., O.M. and H.E.T. developed the theory and carried out the analytical calculations. L.G. and O.M. carried out the numerical calculations. H.E.T supervised the project. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Hakan E. Türeci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., Malik, O. & Türeci, H. Enhancement of laser power-efficiency by control of spatial hole burning interactions. Nature Photon 8, 871–875 (2014). https://doi.org/10.1038/nphoton.2014.244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing