Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatio-temporal couplings for controlling group velocity in longitudinally pumped seeded soft X-ray lasers

Abstract

Controlling the group velocity of an ultrashort laser pulse by means of spatio-temporal couplings has been proposed to overcome the inherent limitations in laser–plasma interactions. Here we report how this method improves the performance of a seeded soft X-ray laser (SXRL), which intrinsically suffers from group velocity mismatch between the infrared pump beam, used to generate the plasma amplifier, and the soft X-ray seed beam. The energy extraction was measured to be three times higher when the pump group velocity varied from 0.55c to 1.05c. We also demonstrate that the SXRL pulse duration is governed by the pump beam velocity. By compensating the natural group velocity mismatch, the SXRL pulse duration can be kept constant along its propagation, resulting in energetic pulses (up to 2 μJ) as short as 350 fs. Such achievements constitute an experimental demonstration of the so-called ‘flying focus effect’ in an application by controlling the group velocity of a high-intensity laser pulse propagating in a plasma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Measurements of the impact of group velocity on SXRL energy.
Fig. 3: Measurements of the impact of group velocity on SXRL pulse duration.
Fig. 4: Three-dimensional simulations of the amplified SXRL pulse.
Fig. 5: Simulations of the impact of group velocity on SXRL pulse duration.

Similar content being viewed by others

Data availability

The main datasets supporting the findings of this study are provided within the paper. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Eliezer, S. & Mima, K. Applications of Laser-Plasma Interactions (CRC Press, 2009).

  2. Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  3. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  4. Mendonca, J. T. Theory of Photon Acceleration (CRC Press, 2000).

  5. Andriyash, I., Balcou, P. & Tikhonchuk, V. Collective properties of a relativistic electron beam injected into a high intensity optical lattice. Eur. Phys. J. D 65, 533–540 (2011).

    Article  ADS  Google Scholar 

  6. Debus, A. et al. Circumventing the dephasing and depletion limits of laser-wakefield acceleration. Phys. Rev. X 9, 031044 (2019).

    Google Scholar 

  7. Palastro, J. P. et al. Dephasingless laser wakefield acceleration. Phys. Rev. Lett. 124, 134802 (2020).

    Article  ADS  Google Scholar 

  8. Caizergues, C., Smartsev, S., Malka, V. & Thaury, C. Phase-locked laser-wakefield electron acceleration. Nat. Photon. 14, 475–479 (2020).

    Article  Google Scholar 

  9. Sainte-Marie, A., Gobert, O. & Quéré, F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017).

    Article  ADS  Google Scholar 

  10. Froula, D. H. et al. Spatiotemporal control of laser intensity. Nat. Photon. 12, 262–265 (2018).

    Article  ADS  Google Scholar 

  11. Jolly, S. W., Gobert, O., Jeandet, A. & Quéré, F. Controlling the velocity of a femtosecond laser pulse using refractive lenses. Opt. Express 18, 4888–4897 (2020).

    Article  ADS  Google Scholar 

  12. Turnbull, D. et al. Ionization waves of arbitrary velocity. Phys. Rev. Lett. 120, 225001 (2018).

    Article  ADS  Google Scholar 

  13. Franke, P. et al. Measurement and control of large diameter ionization waves of arbitrary velocity. Opt. Express 27, 31978–31988 (2019).

    Article  ADS  Google Scholar 

  14. Howard, A. J. et al. Photon acceleration in a flying focus. Phys. Rev. Lett. 123, 124801 (2018).

    Article  ADS  Google Scholar 

  15. Turnbull, D. et al. Raman amplification with a flying focus. Phys. Rev. Lett. 120, 024801 (2018).

    Article  ADS  Google Scholar 

  16. Rus, B. et al. Multimillijoule, highly coherent X-ray laser at 21-nm operating in deep saturation through double-pass amplification. Phys. Rev. A 66, 063806 (2002).

    Article  ADS  Google Scholar 

  17. Rockwood, A. et al. Compact gain-saturated X-ray lasers down to 6.85 nm and amplification down to 5.85 nm. Optica 5, 257–262 (2018).

    Article  ADS  Google Scholar 

  18. Lemoff, B. E., Barty, C. P. & Harris, S. E. Femtosecond-pulse-driven, electron-excited XUV lasers in eight-times-ionized noble gases. Opt. Lett. 19, 569–571 (1994).

    Article  ADS  Google Scholar 

  19. Tissandier, F. et al. Two-color soft X-ray lasing in a high-density nickel-like krypton plasma. Phys. Rev. Lett. 124, 133902 (2020).

    Article  ADS  Google Scholar 

  20. Wang, Y. et al. High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target. Phys. Rev. Lett. 97, 123901 (2006).

    Article  ADS  Google Scholar 

  21. Sebban, S. et al. Demonstration of a Ni-like Kr optical-field-ionization collisional soft X-ray laser at 32.8 nm. Phys. Rev. Lett. 89, 253901 (2002).

    Article  ADS  Google Scholar 

  22. Zeitoun, P. et al. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 431, 426–429 (2004).

    Article  ADS  Google Scholar 

  23. Wang, Y. et al. Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm. Nat. Photon. 2, 94–98 (2008).

    Article  ADS  Google Scholar 

  24. Goddet, J. P. et al. Aberration-free laser beam in the soft X-ray range. Opt. Lett. 34, 2438–2440 (2009).

    Article  ADS  Google Scholar 

  25. Depresseux, A. et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 9, 817–821 (2015).

    Article  ADS  Google Scholar 

  26. Kabacinski, A. et al. Femtosecond soft X-ray lasing in dense collisionaly-pumped plasma. Phys. Rev. Res. 4, L032009 (2022).

    Article  Google Scholar 

  27. Klisnick, A. et al. Transient pumping of a Ni-like Ag X-ray laser with a subpicosecond pump pulse in a traveling-wave irradiation geometry. J. Opt. Soc. Am. B 17, 1093–1097 (2000).

    Article  ADS  Google Scholar 

  28. Oliva, E. et al. DAGON: a 3D Maxwell-Bloch code. In Proc. SPIE 10243, X-ray Lasers and Coherent X-ray Sources: Development and Applications Vol. 10243 (SPIE, 2017); https://doi.org/10.1117/12.2265044

  29. Wang, Y. et al. Measurement of 1-ps soft X-ray laesr pulses from an injection-seeded plasma amplifier. Phys. Rev. A 79, 023810 (2009).

    Article  ADS  Google Scholar 

  30. Helk, T. et al. Table-top extreme ultraviolet second harmonic generation. Sci. Adv. https://doi.org/10.1126/sciadv.abe2265 (2021).

  31. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    Article  ADS  Google Scholar 

  32. Chou, M. C. et al. Dramatic enhancement of optical-field-ionization collisional-excitation X-ray lasing by an optically preformed plasma waveguide. Phys. Rev. Lett. 99, 063904 (2007).

    Article  ADS  Google Scholar 

  33. Oliva, E. et al. Hydrodynamic evolution of plasma waveguides for soft-X-ray amplifiers. Phys. Rev. E 97, 023203 (2018).

    Article  ADS  Google Scholar 

  34. Kabacinski, A. et al. Measurement and control of main spatio-temporal couplings in a CPA laser chain. J. Opt. 23, 06LT01 (2021).

    Article  Google Scholar 

  35. Oliva, E. et al. 3D multi-scale modelling of plasma-based seeded soft X-ray lasers. Eur. Phys. J. D https://doi.org/10.1140/epjd/s10053-021-00298-y (2021).

  36. Ogando, F. & Velarde, P. Development of a radiation transport fluid dynamic code under AMR scheme. J. Quant. Spectrosc. Radiat. Transf. 71, 541–550 (2001).

    Article  Google Scholar 

  37. Cotelo, M. et al. Simulation of radiative shock waves in Xe of last PALS experiments. High Energy Density Phys. 17, 68–73 (2015).

    Article  ADS  Google Scholar 

  38. Lehe, R., Kirchen, M., Andriyash, I. A., Godfrey, B. B. & Vay, J.-L. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun. 203, 66–82 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Cros, B. et al. Characterization of the collisionally pumped optical-field-ionized soft-X-ray laser at 41.8 nm driven in capillary tubes. Phys. Rev. A 73, 033801 (2006).

    Article  ADS  Google Scholar 

  40. Tuitje, F. et al. Nonlinear ionization dynamics of hot dense plasma observed in a laser-plasma amplifier. Light. Sci. Appl. https://doi.org/10.1038/s41377-020-00424-2 (2020).

Download references

Acknowledgements

This work is supported by ‘Investissement d’Avenir’ (ANR-10-LABX-0039-PALM (F.T. and S.S.) and ANR-18-EURE-0014 (A.K.)) and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654148 Laserlab-Europe. This work is also supported by the Grant Agency of the Czech Republic, project no. 18-27340S (M.Z.). We acknowledge support from COST (European Cooperation in Science and Technology) for funding the Action TUMIEE (CA17126) supporting this work. This work is also supported by the Universidad Politécnica de Madrid and the Comunidad Autónoma de Madrid, línea de actuación estímulo a la investigación de jóvenes doctores, project CROM and the Spanish Ministerio de Ciencia e Innovación through a Ramón y Cajal RYC2018-026238-I fellowship (E.O.), and by Plan Estatal de Investigación Científica, Técnica y de Innovación (Spain Ministerio de Ciencia e Innovación), grant no. PID2021-124129OB-I00 (E.O.).

Author information

Authors and Affiliations

Authors

Contributions

A.K., F.T., J.G., M.K. and S.S. designed and built the experiment and performed the measurements. A.K. analysed the experimental results. E.O. developed the DAGON code. E.O. and A.K. performed the numerical simulations. J.-P.G. operated the upgraded laser system of ‘Salle Jaune’. I.A.A., C.T. and P.Z. supported the project. All the authors contributed to the writing of the paper.

Corresponding author

Correspondence to Stéphane Sebban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Samuel Barber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion: dephasing length and need for plasma dispersion compensation in the case of seeded SXRLs (Figs. 1 and 2 and one reference), and energy measurements and definition of energy extraction (Fig. 3).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabacinski, A., Oliva, E., Tissandier, F. et al. Spatio-temporal couplings for controlling group velocity in longitudinally pumped seeded soft X-ray lasers. Nat. Photon. 17, 354–359 (2023). https://doi.org/10.1038/s41566-023-01165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01165-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing