Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast single-shot diffraction imaging of nanoscale dynamics

A Corrigendum to this article was published on 01 September 2008

Abstract

The transient nanoscale dynamics of materials on femtosecond to picosecond timescales is of great interest in the study of condensed phase dynamics such as crack formation, phase separation and nucleation, and rapid fluctuations in the liquid state or in biologically relevant environments. The ability to take images in a single shot is the key to studying non-repetitive behaviour mechanisms, a capability that is of great importance in many of these problems. Using coherent diffraction imaging with femtosecond X-ray free-electron-laser pulses we capture time-series snapshots of a solid as it evolves on the ultrafast timescale. Artificial structures imprinted on a Si3N4 window are excited with an optical laser and undergo laser ablation, which is imaged with a spatial resolution of 50 nm and a temporal resolution of 10 ps. By using the shortest available free-electron-laser wavelengths1 and proven synchronization methods2 this technique could be extended to spatial resolutions of a few nanometres and temporal resolutions of a few tens of femtoseconds. This experiment opens the door to a new regime of time-resolved experiments in mesoscopic dynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray dynamic diffraction imaging.
Figure 2: Sample evolution revealed by coherent X-ray diffraction.
Figure 3: Correlation between diffraction patterns quantify the loss of mesoscale order.
Figure 4: Reference object and objects retrieved using phase retrieval.

References

  1. Ackerman, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  2. Cavalieri, A. L. et al. Clocking femtosecond X rays. Phys. Rev. Lett 94, 114801 (2005).

    Article  ADS  Google Scholar 

  3. Sokolowski-Tinten, K. et al. Transients states of matter during short pulse laser ablation. Phys. Rev. Lett. 81, 224–227 (1998).

    Article  ADS  Google Scholar 

  4. Siders, C. W. et al. Direct measurement of non-thermal melting using ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).

    Article  Google Scholar 

  5. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    Article  ADS  Google Scholar 

  6. Lobastov, V. A., Srinivasan, R. & Zewail, A. H. Four-dimensional ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 102, 7069–7073 (2005).

    Article  ADS  Google Scholar 

  7. Armstrong, M. R. et al. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356–367 (2007)

    Article  Google Scholar 

  8. Schoenlein, R. W. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000)

    Article  ADS  Google Scholar 

  9. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  ADS  Google Scholar 

  10. Rose-Petruck, C. et al. Picosecond milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999).

    Article  ADS  Google Scholar 

  11. Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002)

    Article  ADS  Google Scholar 

  12. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics 2, 839–843 (2006)

    Article  ADS  Google Scholar 

  13. Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

    Article  ADS  Google Scholar 

  14. Ischebeck, I. et al. Study of the transverse coherence at the TTF free electron laser. Nucl. Instrum. Meth. A 507, 175–180 (2003).

    Article  ADS  Google Scholar 

  15. Young, J. F., Preston, J. S., van Driel, H. M. & Sipe, J. E. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155–1172 (1983).

    Article  ADS  Google Scholar 

  16. Brauer, S. et al. X-ray intensity fluctuation spectroscopy observations of critical dynamics in Fe3Al. Phys. Rev. Lett. 74, 2010–2013 (1995).

    Article  ADS  Google Scholar 

  17. Dierker, S. B., Pindak, S. R., Fleming, R., Robinson, I. & Berman, L. X-ray photon correlation spectroscopy study of Brownian motion if gold colloids in glycerol. Phys. Rev. Lett. 75, 449–452 (1995).

    Article  ADS  Google Scholar 

  18. Gr¨ubel, G., Stephenson, G. B., Gutt, C., Sinn, H. & Tschentscher, T. XPCS at the European X-ray free electron laser facility. Nucl. Instrum. Meth. B 267, 357–367 (2007).

    Google Scholar 

  19. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  ADS  Google Scholar 

  20. Bajt, S. et al. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser. Appl. Opt. 47, 1673–1683 (2008).

    Article  ADS  Google Scholar 

  21. Will, I., Koss, G. & Templin, I. The upgraded photocathode laser of the TESLA test facility. Nucl. Instrum. Meth. A 541, 467–477 (2005).

    Article  ADS  Google Scholar 

  22. Radcliffe, P. et al. An experiment for two-color photoionization using high intensity extreme-UV free electron and near-IR laser pulses. Nucl. Instrum. Meth. A 583, 516–525 (2007).

    Article  ADS  Google Scholar 

  23. Hau-Riege, S. P., London, R. A., Chapman, H. N. & Bergh, M. Soft-x-ray free-electron-laser interaction with materials. Phys Rev E 76, 046403 (2007).

    Article  ADS  Google Scholar 

  24. More, R. M., Warren, K. H., Young, D. A. & Zimmerman, G. B. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988).

    Article  ADS  Google Scholar 

  25. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Article  ADS  Google Scholar 

  26. Luke, D. R., Relaxed averaged alternating reflections for diffraction imaging. Inverse Problems 21, 37–50 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  27. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

    Article  ADS  Google Scholar 

  28. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  29. Elser, V. Phase retrieval by iterated projections J. Opt. Soc. Am. A 20, 40–55 (2003).

    Article  ADS  Google Scholar 

  30. Hau-Riege, S. P. et al. SPEDEN: reconstructing single particles from their diffraction patterns. Acta. Cryst. A 60, 294–305 (2004).

    Article  Google Scholar 

  31. Shapiro, D. et al. Biological imaging by soft X-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Special thanks are given to the scientific and technical staff of FLASH at DESY, Hamburg, in particular to T. Tschentscher, J. Schneider, J. Feldhaus, R.L. Johnson, U. Hahn, T. Nũnez, K. Tiedtke, H. Redlin, S. Toleikis, E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov. We also thank J. Alameda, E. Spiller, E. Gullikson, A. Aquila, F. Dollar, T. McCarville, F. Weber, J. Crawford, C. Stockton, M. Haro, J. Robinson, H. Thomas and E. Eremina for technical help with these experiments. This work was supported by the following agencies: The US Department of Energy (DOE) Lawrence Livermore National Laboratory; The National Science Foundation Center for Biophotonics, University of California, Davis; The Advanced Light Source and National Centre for Electron Microscopy, Lawrence Berkeley Laboratory, under contract DE-AC03-76SF00098; Natural Sciences and Engineering Research Council of Canada (NSERC Postdoctoral Fellowship to M.J.B.); Sven and Lilly Lawskis Foundation (doctoral fellowship to M.M.S.); the US Department of Energy Office of Science to the Stanford Linear Accelerator Center; the European Union (TUIXS); the German Federal Ministry of Education and Research (FSP 301); The Swedish Research Council; The Swedish Foundation for International Cooperation in Research and Higher Education; and The Swedish Foundation for Strategic Research. This work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52- 07NA27344.

Author information

Authors and Affiliations

Authors

Contributions

H.N.C., A.B., S.Boutet and K.S.T. conceived the experiment, and A.B., H.N.C., S.Boutet, M.J.B., S.M., B.W.W., M.F. and S.Bajt contributed to its design. Samples were prepared by S.Boutet, M.J.B. and S.Bajt. A.B., S.Boutet, M.J.B., S.M., K.S.T., N.S., R.T., H.E., A.C., S.D., M.F., B.W.W., M.M.S., R.T., and J.H. carried out the experiment, in addition to K.S.T., N.S., R.T., H.E., A.C. and S.D., who were responsible for the ablation laser pulse and synchronization. A.B., H.N.C., S.M. and K.S.T. analysed the data. S.P.H.R. performed hydrodynamic modelling of sample ablation. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Anton Barty or Henry N. Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barty, A., Boutet, S., Bogan, M. et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nature Photon 2, 415–419 (2008). https://doi.org/10.1038/nphoton.2008.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing