Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity

Abstract

Light is intrinsically very difficult to store in a small space. The ability to trap photons for a long time (photon lifetime, τph) and to slow the propagation of light plays a significant role in quantum information1,2,3 and optical processing4,5,6. Photonic-crystal cavities with an ultrahigh quality factor (Q) are attracting attention7,8 because of their extremely small volume; however, high-Q demonstrations have been accomplished only with spectral measurements9,10,11. Here we describe time-domain measurements on photonic-crystal cavities with the highest Q among wavelength-scale cavities, and show directly that photons are trapped for one nanosecond. These techniques constitute clear and accurate ways of investigating ultrasmall and long τph systems. We also show that optical pulses are delayed for 1.45 ns, corresponding to light propagation at 2×10−5 c the speed of light in a vacuum, which is the slowest for any dielectric slow-light medium. Furthermore, we succeeded in dynamically changing the Q within the τph, which is key to realizing the dynamic control of light12,13 and photon-trapping memory14.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonic-crystal nanocavity with a locally modulated waveguide width.
Figure 2: Photon lifetime and pulse delaying observed at an ultrahigh-Q photonic-crystal nanocavity.
Figure 3: Nonlinear response of a waveguide-width-modulated photonic-crystal nanocavity.
Figure 4: Dynamic tuning of the photon lifetime of a photonic-crystal nanocavity.

Similar content being viewed by others

References

  1. Julsgaard, B., Sherson, J., Cirac J-I., Fiurášek, J. & Polzik E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  2. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  3. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  4. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  5. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. 87, 151112 (2005).

    Article  ADS  Google Scholar 

  6. Birnbaum, K. M., Boca, A., Miller, R., Boozer, A. D., Northup, T. E. & Kimble, H. J. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  7. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Physica Scripta T76, 127–137 (1998).

    Article  ADS  Google Scholar 

  8. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mat. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  9. Akahane, Y., Asano, T., Song, B. S. & Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  10. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mat. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  11. Kuramochi, E., Notomi, M., Mitsugi, S., Shinya, A. & Tanabe, T. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006).

    Article  ADS  Google Scholar 

  12. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 051803 (2006).

    Article  ADS  Google Scholar 

  13. Notomi, M., Taniyama, H., Mitsugi, S. & Kuramochi, E. Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs. Phys. Rev. Lett. 97, 023903 (2006).

    Article  ADS  Google Scholar 

  14. Notomi, M. et al. Dynamic control of light by photonic-crystal resonator-waveguide-coupled system. In Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006 Technical Digest (Optical Society of America, Washington, DC, 2006) QWA1.

  15. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    Article  Google Scholar 

  16. Lukin, M. D. & Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    Article  ADS  Google Scholar 

  17. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  ADS  Google Scholar 

  18. Kiyota, K., Kise, T., Yokouchi, N., Ide, T. & Baba, T. Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation. Appl. Phys. Lett. 88, 201904 (2006).

    Article  ADS  Google Scholar 

  19. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  20. Borselli, M., Johnson, T. J. & Painter, O. Measuring the role of surface chemistry in silicon microphotonics. Appl. Phys. Lett. 88, 131114 (2006).

    Article  ADS  Google Scholar 

  21. Kippenberg, T. J. Spillane, S. M. & Vahala, K. J. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett. 85, 6113–6115 (2004).

    Article  ADS  Google Scholar 

  22. Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. & Kuramochi, E. Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt. Lett. 30, 2575–2577 (2005).

    Article  ADS  Google Scholar 

  23. O'Keefe, A. & Deacon, D. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988).

    Article  ADS  Google Scholar 

  24. Asano, T., Kunishi, W., Song, B.-S. & Noda, S. Time-domain response of point-defect cavities in two-dimensional photonic crystal slabs using picosecond light pulse. Appl. Phys. Lett. 88, 151102 (2006).

    Article  ADS  Google Scholar 

  25. Notomi, M. et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678–2687 (2005).

    Article  ADS  Google Scholar 

  26. Barclay, P. E., Srinivasan, K. & Painter, O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. Opt. Express 13, 801–820 (2005).

    Article  ADS  Google Scholar 

  27. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  28. Bollinger, L. & Thomas, G. Measurement of the time dependence of scintillation intensity by a delayed-coincidence method. Rev. Sci. Instrum. 32, 1044–1050 (1961).

    Article  ADS  Google Scholar 

  29. Yanik, M. F. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr H. Kamada for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.T. performed the experiment, M.N. planned the project, E.K. fabricated the sample, and both A.S. and H.T. supported the numerical calculation and discussion.

Corresponding author

Correspondence to Takasumi Tanabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, T., Notomi, M., Kuramochi, E. et al. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon 1, 49–52 (2007). https://doi.org/10.1038/nphoton.2006.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing