Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale

Abstract

Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu–Al–Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = −2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superelastic behaviour in microscale pillars.
Figure 2: Critical stress for superelasticity in the microscale domain, and reproducibility of the nanocompression tests.
Figure 3: Superelastic behaviour in nanoscale pillars.
Figure 4: Size effect on the critical stress for superelasticity.
Figure 5: Scaling power-law for superelasticity at the nanoscale.
Figure 6: Atomistic and elastic model for the size effect on superelasticity.

Similar content being viewed by others

References

  1. Delaey, L. in Materials Science and Technology Vol. 5 (eds Cahn, R. W., Haasen, P. & Kramer, E. J.) 339–404 (VCH, 1991).

    Google Scholar 

  2. Otsuka, K. & Wayman, C. M. (eds) Shape Memory Materials (Cambridge Univ. Press, 1998).

    Google Scholar 

  3. Lagoudas, D. L. (ed.) Shape Memory Alloys (Springer, 2008).

    Google Scholar 

  4. Yamauchi, K., Ohkata, I., Tsuchiya, K. & Miyazaki, S. (eds) Shape Memory and Superelastic Alloys (Woodhead, 2011).

    Book  Google Scholar 

  5. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article  Google Scholar 

  6. Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Article  CAS  Google Scholar 

  7. Omori, T. et al. Superelastic effect in polycrystalline ferrous alloys. Science 333, 68–71 (2011).

    Article  CAS  Google Scholar 

  8. Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    Article  CAS  Google Scholar 

  9. Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006).

    Article  CAS  Google Scholar 

  10. Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  11. Van Humbeeck, J. V. Shape memory alloys: a material and a technology. Adv. Eng. Mater. 3, 837–850 (2001).

    Article  CAS  Google Scholar 

  12. Kohl, M. Shape Memory Microactuators (Springer, 2004).

    Book  Google Scholar 

  13. Frick, C. P., Orso, S. & Arzt, E. Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Mater. 55, 3845–3855 (2007).

    Article  CAS  Google Scholar 

  14. San Juan, J., Nó, M. L. & Schuh, C. A. Superelasticity and shape memory in micro- and nanometer-scale pillars. Adv. Mater. 20, 272–278 (2008).

    Article  CAS  Google Scholar 

  15. San Juan, J., Nó, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotech. 4, 415–419 (2009).

    Article  CAS  Google Scholar 

  16. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  17. Gall, K., Diao, J. & Dunn, M. L. The strength of gold nanowires. Nano Lett. 4, 2431–2436 (2004).

    Article  CAS  Google Scholar 

  18. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    Article  CAS  Google Scholar 

  19. Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  CAS  Google Scholar 

  20. Clark, B. G., Gianola, D. S., Kraft, O. & Frick, C. P. Size independent shape memory behavior of nickel–titanium. Adv. Eng. Mater. 12, 808–815 (2010).

    Article  CAS  Google Scholar 

  21. Ozdemir, N., Karaman, I., Mara, N. A., Chumlyakov, Y. I. & Karaca, H. E. Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation. Acta Mater. 60, 5670–5685 (2012).

    Article  CAS  Google Scholar 

  22. Du, Z. et al. Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars. Scripta Mater. 101, 40–43 (2015).

    Article  CAS  Google Scholar 

  23. Recarte, V., Pérez-Sáez, R. B., Bocanegra, E. H., Nó, M. L. & San Juan, J. Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng. A 273–275, 380–384 (1999).

    Article  Google Scholar 

  24. Fischer-Cripps, A. C. Nanoindentation (Springer, 2004).

    Book  Google Scholar 

  25. Schuh, C. A. Nanoindentation studies of materials. Mater. Today 9, 32–40 (2006).

    Article  CAS  Google Scholar 

  26. San Juan, J., Nó, M. L. & Schuh, C. A. Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. J. Mater. Res. 26, 2461–2469 (2011).

    Article  CAS  Google Scholar 

  27. San Juan, J., Nó, M. L. & Schuh, C. A. Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars. Acta Mater. 60, 4093–4106 (2012).

    Article  CAS  Google Scholar 

  28. San Juan, J. et al. In-situ nano-compression tests on shape memory alloys. Proc. 18th International Microscopy Conference 3133 (2014).

  29. Ibarra, A., Caillard, D., San Juan, J. & Nó, M. L. Martensite nucleation on dislocations in Cu–Al–Ni shape memory alloys. Appl. Phys. Lett. 90, 101907 (2007).

    Article  Google Scholar 

  30. Nó, M. L., Ibarra, A., Caillard, D. & San Juan, J. Stress-induced phase transformations studied by in-situ transmission electron microscopy. ICSMA-15. J. Phys. Conf. Series 240, 012002_1-8 (2010).

    Article  Google Scholar 

  31. Vitek, V. in Dislocations and Properties of Real Materials (ed. Loretto, M.H.) 30–50 (The Institute of Metals, 1984).

    Google Scholar 

  32. Vaihle, C. & Farkas, D. Shear faults and dislocation core structure simulations in B2 FeAl. Acta Mater. 45, 4463–4473 (1997).

    Article  Google Scholar 

  33. Dou, R. & Derby, B. A universal scaling law for the strength of metal micropillars and nanowires. Scripta Mater. 61, 524–527 (2009).

    Article  CAS  Google Scholar 

  34. Horikawa, H., Ichinose, S., Morii, S., Miyazaki, S. & Otsuka, K. Orientation dependence of β1 → β1′ stress-induced martensitic transformation in Cu–Al–Ni alloy. Metall. Trans. A 19, 915–923 (1988).

    Article  Google Scholar 

  35. Nó, M. L., Ibarra, A., Caillard, D. & San Juan, J. Quantitative analysis of stress-induced martensites by in situ transmission electron microscopy superelastic tests in Cu–Al–Ni shape memory alloys. Acta Mater. 58, 6181–6193 (2010).

    Article  Google Scholar 

  36. El-Awady, J. A. et al. Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scripta Mater. 68, 207–2010 (2013).

    Article  CAS  Google Scholar 

  37. Derlet, P. M. & Maaß, R. Universal power-law strengthening in metals? Scripta Mater. 109, 19–22 (2015).

    Article  CAS  Google Scholar 

  38. Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  39. Seo, J.-H. et al. Superplastic deformation of defect-free Au nanowires via coherent twin propagation. Nano Lett. 11, 3499–3502 (2011).

    Article  CAS  Google Scholar 

  40. Sedlmayr, A. et al. Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985–3993 (2012).

    Article  CAS  Google Scholar 

  41. Ma, F., Xu, K.-W. & Chu, P. K. Surface-induced structural transformations in nanowires. Mater. Sci. Eng. R 74, 173–209 (2013).

    Article  Google Scholar 

  42. Jennings, A. T. et al. Modeling dislocation nucleation strengths in pristine metallic nanowire under experimental conditions. Acta Mater. 61, 2244–2259 (2013).

    Article  CAS  Google Scholar 

  43. Chen, L. Y., He, M., Shin, J., Richter, G. & Gianola, D. S. Measuring surface dislocation nucleation in defect-scarce nanostrutures. Nat. Mater. 14, 707–713 (2015).

    Article  CAS  Google Scholar 

  44. Kastner, O. First Principles Modelling of Shape Memory Alloys (Springer, 2012).

    Book  Google Scholar 

  45. Graczykowski, B. et al. Surface acoustic waves and elastic constants of Cu14%Al4%Ni shape memory alloys studied by Brillouin light scattering. J. Phys. D 44, 455307 (2011).

    Article  Google Scholar 

  46. San Juan, J., Gómez-Cortés, J. F., López, G. A., Jiao, C. & Nó, M. L. Long-term superelastic cycling at nano-scale in Cu–Al–Ni shape memory alloy micropillars. Appl. Phys. Lett. 104, 011901 (2014).

    Article  Google Scholar 

  47. Jennings, A. T. & Greer, J. R. Tensile deformation of electroplated copper nanopillars. Philos. Mag. 91, 1108–1120 (2011).

    Article  CAS  Google Scholar 

  48. Jennings, A. T., Burek, M. J. & Greer, J. R. Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars. Phys. Rev. Lett. 104, 135503 (2010).

    Article  Google Scholar 

  49. Zhang, H., Chuster, B. E., Wei, Q. & Ramesh, K. T. The design of accurate micro-compression experiments. Scripta Mater. 54, 181–186 (2006).

    Article  CAS  Google Scholar 

  50. Novák, V., Šittner, P. & Zárubová, N. Anisotropy of transformation characteristics of Cu-base shape memory alloys. Mater. Sci. Eng. A 234–236, 414–417 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO), projects MAT2009-12492, MAT2012-36421 and CONSOLIDER-INGENIO 2010 CSD2009-00013, as well as by the Consolidated Research Group IT-10-310 and the ETORTEK-ACTIMAT project from the Education and Industry Departments of the Basque Government and Junta de Andalucía (INNANOMAT PAI research group TEP-946). J.F.G.-C. thanks MINECO for a PhD grant. This work made use of the FIB facilities of SGIKER from the UPV/EHU and of IMEYMAT-UCA. Co-funding from FEDER-EU and REACT projects from H-2020, grant 640241, are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.M.S.J. and M.L.N. designed the experiments, developed the model and wrote the initial manuscript with input from all the authors. I.L.-F. and J.M.S.J. produced the alloys. J.F.G.-C., J.H.-S., S.I.M., A.C., M.L.N. and J.M.S.J. performed the milling of the pillars by FIB and took the SEM micrographs. J.F.G.-C. and J.M.S.J. performed the nanocompression tests. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jose M. San Juan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1298 kb)

Supplementary Movie

Supplementary Movie (AVI 4880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Cortés, J., Nó, M., López-Ferreño, I. et al. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nature Nanotech 12, 790–796 (2017). https://doi.org/10.1038/nnano.2017.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing