Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transmission of chirality through space and across length scales


Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Types of chirality.
Figure 2: Mechanisms of transmission.
Figure 3: Transmission in ordered assemblies.
Figure 4: Transmission of chirality in nanomaterials.


  1. 1

    Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds (Wiley, 1994).

    Google Scholar 

  2. 2

    Feringa, B. L. & van Delden, R. A. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 38, 3418–3438 (1999).

    CAS  Google Scholar 

  3. 3

    Fábri, C., Horný, Ľ. & Quack, M. Tunneling and parity violation in trisulfane (HSSSH): an almost ideal molecule for detecting parity violation in chiral molecules. ChemPhysChem 16, 3584–3589 (2015).

    Google Scholar 

  4. 4

    Quack, M. how important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 41, 4618–4630 (2002).

    CAS  Google Scholar 

  5. 5

    Kawasaki, T. et al. Discrimination of cryptochirality in chiral isotactic polystyrene by asymmetric autocatalysis. Chem. Commun. 5621–5623 (2009).

  6. 6

    Guye, P.-A. Influence de la constitution chimique des dérivés du carbone sur le sens et les variations de leur pouvoir rotatoire. C. R. Hebd. Seances Acad. Sci. 110, 714–716 (1890).

    Google Scholar 

  7. 7

    Buda, A. B., der Heyde, T. A. & Mislow, K. On quantifying chirality. Angew.Chem. Int. Ed. 31, 989–1007 (1992).

    Google Scholar 

  8. 8

    Millar, G., Weinberg, N. & Mislow, K. On the Osipov-Pickup-Dunmur chirality index: why pseudoscalar functions are generally unsuitable to quantify chirality. Mol. Phys. 103, 2769–2772 (2005).

    CAS  Google Scholar 

  9. 9

    Pasteur, M. L. L. Recherches sur les propriétés spécifiques des deux acides qui composent l'acide racémique. Ann. Chim. Phys. 28, 56–117 (1850).

    Google Scholar 

  10. 10

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006).

    CAS  Google Scholar 

  11. 11

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Google Scholar 

  12. 12

    Kay, E. R. & Leigh, D. A. Rise of the molecular machines. Angew. Chem. Int. Ed. 54, 10080–10088 (2015).

    CAS  Google Scholar 

  13. 13

    Brewster, J. H. Racemic, scalemic, holemic. Chem. Eng. News 70, 2–3 (1992).

    Google Scholar 

  14. 14

    Eliel, E. L. Infelicitous stereochemical nomenclature. Chirality 9, 428–430 (1997).

    CAS  Google Scholar 

  15. 15

    Helmchen, G. Glossary of problematic terms in organic stereochemistry. Enantiomer 2, 315–318 (1997).

    CAS  Google Scholar 

  16. 16

    Tschierske, C. & Ungar, G. Mirror symmetry breaking by chirality synchronisation in liquids and liquid crystals of achiral molecules. ChemPhysChem 17, 9–26 (2016).

    CAS  Google Scholar 

  17. 17

    Satyanarayana, T., Abraham, S. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).

    CAS  Google Scholar 

  18. 18

    Blackmond, D. G. & Klussmann, M. Spoilt for choice: assessing phase behavior models for the evolution of homochirality. Chem. Commun. 3990–3996 (2007).

  19. 19

    Yashima, E., Maeda, K. & Nishimura, T. Detection and amplification of chirality by helical polymers. Chem. Eur. J. 10, 42–51 (2004).

    CAS  Google Scholar 

  20. 20

    Palmans, A. R. A. & Meijer, E. W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 46, 8948–8968 (2007).

    CAS  Google Scholar 

  21. 21

    Pijper, D. & Feringa, B. L. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter 4, 1349–1372 (2008).

    CAS  Google Scholar 

  22. 22

    Sorrenti, A., Illa, O. & Ortuno, R. M. Amphiphiles in aqueous solution: well beyond a soap bubble. Chem. Soc. Rev. 42, 8200–8219 (2013).

    CAS  Google Scholar 

  23. 23

    Nakano, T. & Okamoto, Y. Synthetic helical polymers: conformation and function. Chem. Rev. 101, 4013–4038 (2001).

    CAS  Google Scholar 

  24. 24

    Cornelissen, J. J. L. M., Rowan, A. E., Nolte, R. J. M. & Sommerdijk, N. A. J. M. Chiral architectures from macromolecular building blocks. Chem. Rev. 101, 4039–4070 (2001).

    CAS  Google Scholar 

  25. 25

    Hembury, G. A., Borovkov, V. V. & Inoue, Y. Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008).

    CAS  Google Scholar 

  26. 26

    Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    CAS  Google Scholar 

  27. 27

    Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661–2670 (2003).

    CAS  Google Scholar 

  28. 28

    Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    CAS  Google Scholar 

  29. 29

    Green, M. M., Andreola, C., Munoz, B., Reidy, M. P. & Zero, K. Macromolecular stereochemistry: a cooperative deuterium isotope effect leading to a large optical rotation. J. Am. Chem. Soc. 110, 4063–4065 (1988).

    CAS  Google Scholar 

  30. 30

    Cantekin, S., Balkenende, D. W. R., Smulders, M. M. J., Palmans, A. R. A. & Meijer, E. W. The effect of isotopic substitution on the chirality of a self-assembled helix. Nat. Chem. 3, 42–46 (2011).

    CAS  Google Scholar 

  31. 31

    Yin, P. et al. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nat. Commun. 6, 6475 (2015).

    CAS  Google Scholar 

  32. 32

    De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    CAS  Google Scholar 

  33. 33

    Gan, Q. et al. Nat. Nanotech. (2017).

  34. 34

    Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).

    CAS  Google Scholar 

  35. 35

    Ohta, E. et al. Redox-responsive molecular helices with highly condensed π-clouds. Nat. Chem. 3, 68–73 (2010).

    Google Scholar 

  36. 36

    Azeroual, S. et al. Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem. Commun. 48, 2292 (2012).

    CAS  Google Scholar 

  37. 37

    Ribó, J. M., Crusats, J., Sagués, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    Google Scholar 

  38. 38

    Micali, N. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012).

    CAS  Google Scholar 

  39. 39

    Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009).

    CAS  Google Scholar 

  40. 40

    Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Google Scholar 

  41. 41

    Green, M. M., Garetz, B. A., Munoz, B. & Chang, H. Majority rules in the copolymerization of mirror image isomers. J. Am. Chem. Soc. 117, 4181–4182 (1995).

    CAS  Google Scholar 

  42. 42

    Smulders, M. M. J. et al. Probing the limits of the majority-rules principle in a dynamic supramolecular polymer. J. Am. Chem. Soc. 132, 620–626 (2010).

    CAS  Google Scholar 

  43. 43

    Markvoort, A. J. et al. Theoretical models of nonlinear effects in two-component cooperative supramolecular copolymerizations. Nat. Commun. 2, 509 (2011).

    Google Scholar 

  44. 44

    Ajayaghosh, A., Varghese, R., Mahesh, S. & Praveen, V. K. From vesicles to helical nanotubes: a sergeant-and-soldiers effect in the self-assembly of oligo(p-phenyleneethynylene)s. Angew. Chem. Int. Ed. 45, 7729–7732 (2006).

    CAS  Google Scholar 

  45. 45

    Arias, S., Bergueiro, J., Freire, F., Quiñoá, E. & Riguera, R. Chiral nanostructures from helical copolymer-metal complexes: tunable cation-π interactions and sergeants and soldiers effect. Small 12, 238–244 (2016).

    CAS  Google Scholar 

  46. 46

    Li, J., Schuster, G. B., Cheon, K. S., Green, M. M. & Selinger, J. V. Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc. 122, 2603–2612 (2000).

    CAS  Google Scholar 

  47. 47

    Noe, C. R., Knollmüller, M. & Ettmayer, P. Paraformaldehyde as possible chirality amplifier. Angew. Chem. Int. Ed. 27, 1379–1381 (1988).

    Google Scholar 

  48. 48

    Boddaert, T., Solà, J., Helliwell, M. & Clayden, J. Chemical communication: conductors and insulators of screw-sense preference between helical oligo(aminoisobutyric acid) domains. Chem. Commun. 48, 3397–3399 (2012).

    CAS  Google Scholar 

  49. 49

    Byrne, L. et al. Foldamer-mediated remote stereocontrol: >1,60 asymmetric induction. Angew. Chem. Int. Ed. 53, 151–155 (2014).

    CAS  Google Scholar 

  50. 50

    De Poli, M. et al. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 352, 575–580 (2016).

    CAS  Google Scholar 

  51. 51

    Inai, Y. et al. Induction of one-handed helical screw sense in achiral peptide through the domino effect based on interacting its N-terminal amino group with chiral carboxylic acid. J. Am. Chem. Soc. 122, 11731–11732 (2000).

    CAS  Google Scholar 

  52. 52

    Hummel, R.-P., Toniolo, C. & Jung, G. Conformational transitions between enantiomeric 310-helices. Angew. Chem. Int. Ed. 26, 1150–1152 (1987).

    Google Scholar 

  53. 53

    Le Bailly, B. A. F. & Clayden, J. Dynamic foldamer chemistry. Chem. Commun. 2, 303 (2016).

    Google Scholar 

  54. 54

    Yu, Z. & Hecht, S. Remote control over folding by light. Chem. Commun. 52, 6639–6653 (2016).

    CAS  Google Scholar 

  55. 55

    Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 46, 3693–3696 (2007).

    CAS  Google Scholar 

  56. 56

    Pijper, D., Jongejan, M. G. M., Meetsma, A. & Feringa, B. L. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch. J. Am. Chem. Soc. 130, 4541–4552 (2008).

    CAS  Google Scholar 

  57. 57

    Zhao, D., van Leeuwen, T., Cheng, J. & Feringa, B. L. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 9, 250–256 (2017).

    CAS  Google Scholar 

  58. 58

    Eelkema, R. & Feringa, B. L. Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729–3745 (2006).

    CAS  Google Scholar 

  59. 59

    Pérez-García, L. & Amabilino, D. B. Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem. Soc. Rev. 36, 941–967 (2007).

    Google Scholar 

  60. 60

    Reddy, R. A. & Tschierske, C. Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem. 16, 907–961 (2006).

    CAS  Google Scholar 

  61. 61

    Dressel, C., Reppe, T., Prehm, M., Brautzsch, M. & Tschierske, C. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nat. Chem. 6, 971–977 (2014).

    CAS  Google Scholar 

  62. 62

    Green, M. M. et al. Mechanism of the transformation of a stiff polymer lyotropic nematic liquid crystal to the cholesteric state by dopant-mediated chiral information transfer. J. Am. Chem. Soc. 120, 9810–9817 (1998).

    CAS  Google Scholar 

  63. 63

    Sato, T. et al. Polyisocyanates and the interplay of experiment and theory in the formation of lyotropic cholesteric states. Macromolecules 26, 4551–4559 (1993).

    CAS  Google Scholar 

  64. 64

    Tang, K., Green, M. M., Cheon, K. S., Selinger, J. V. & Garetz, B. A. Chiral conflict. The effect of temperature on the helical sense of a polymer controlled by the competition between structurally different enantiomers: from dilute solution to the lyotropic liquid crystal state. J. Am. Chem. Soc. 125, 7313–7323 (2003).

    CAS  Google Scholar 

  65. 65

    Zheng, Z. et al. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531, 352–356 (2016).

    CAS  Google Scholar 

  66. 66

    Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS  Google Scholar 

  67. 67

    Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    CAS  Google Scholar 

  68. 68

    Aßhoff, S. J. et al. High-power actuation from molecular photoswitches in enantiomerically paired soft springs. Angew. Chem. Int. Ed. 56, 3261–3265 (2017).

    Google Scholar 

  69. 69

    Katsonis, N., Lacaze, E. & Feringa, B. L. Molecular chirality at fluid/solid interfaces: expression of asymmetry in self-organised monolayers. J. Mater. Chem. 18, 2065–2073 (2008).

    CAS  Google Scholar 

  70. 70

    Parschau, M. & Ernst, K.-H. Disappearing enantiomorphs: single handedness in racemate crystals. Angew. Chem. Int. Ed. 54, 14422–14426 (2015).

    CAS  Google Scholar 

  71. 71

    Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    CAS  Google Scholar 

  72. 72

    Masini, F. et al. Chiral induction by seeding surface assemblies of chiral switches. J. Am. Chem. Soc. 133, 13910–13913 (2011).

    CAS  Google Scholar 

  73. 73

    Parschau, M., Romer, S. & Ernst, K.-H. Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 126, 15398–15399 (2004).

    CAS  Google Scholar 

  74. 74

    Fang, Y. et al. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nat. Chem. 8, 711–717 (2016).

    CAS  Google Scholar 

  75. 75

    Fasel, R., Parschau, M. & Ernst, K. H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439, 449–452 (2006).

    CAS  Google Scholar 

  76. 76

    Yun, Y. J. & Gellman, A. J. Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat. Chem. 7, 520–525 (2015).

    CAS  Google Scholar 

  77. 77

    Ortega Lorenzo, M., Baddeley, C. J., Muryn, C. & Raval, R. Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376–379 (2000).

    Google Scholar 

  78. 78

    Lawton, T. J. et al. Long range chiral imprinting of Cu(110) by tartaric acid. J. Phys. Chem. C 117, 22290–22297 (2013).

    CAS  Google Scholar 

  79. 79

    Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    CAS  Google Scholar 

  80. 80

    Roth, C., Parschau, M. & Ernst, K. H. Chiral reconstruction of a metal surface by adsorption of racemic malic acid. ChemPhysChem 12, 1572–1577 (2011).

    CAS  Google Scholar 

  81. 81

    Gellman, A. J. et al. Superenantioselective chiral surface explosions. J. Am. Chem. Soc. 135, 19208–19214 (2013).

    CAS  Google Scholar 

  82. 82

    Lieberman, I., Shemer, G., Fried, T., Kosower, E. M. & Markovich, G. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 47, 4855–4857 (2008).

    CAS  Google Scholar 

  83. 83

    Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

    CAS  Google Scholar 

  84. 84

    Zhou, Y. et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    CAS  Google Scholar 

  85. 85

    Vázquez-Nakagawa, M., Rodríguez-Pérez, L., Herranz, M. A. & Martín, N. Chirality transfer from graphene quantum dots. Chem. Commun. 52, 665–668 (2015).

    Google Scholar 

  86. 86

    Suzuki, N. et al. Chiral graphene quantum dots. ACS Nano 10, 1744–1755 (2016).

    CAS  Google Scholar 

  87. 87

    Govorov, A. O. et al. Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J. Mater. Chem. 21, 16806–16818 (2011).

    CAS  Google Scholar 

  88. 88

    Dolamic, I., Varnholt, B. & Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 6, 7117 (2015).

    CAS  Google Scholar 

  89. 89

    Jin, R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7, 1549–1565 (2015).

    CAS  Google Scholar 

  90. 90

    Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013).

    CAS  Google Scholar 

  91. 91

    Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    CAS  Google Scholar 

  92. 92

    Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    CAS  Google Scholar 

  93. 93

    Guerrero-Martínez, A. et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50, 5499–5503 (2011).

    Google Scholar 

  94. 94

    Wang, R.-Y. et al. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter 7, 8370–8375 (2011).

    CAS  Google Scholar 

  95. 95

    Mitov, M., Portet, C., Bourgerette, C., Snoeck, E. & Verelst, M. Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal. Nat. Mater. 1, 229–231 (2002).

    CAS  Google Scholar 

  96. 96

    Querejeta-Fernández, A., Chauve, G., Methot, M., Bouchard, J. & Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 136, 4788–4793 (2014).

    Google Scholar 

  97. 97

    Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  Google Scholar 

  98. 98

    Yan, W. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012).

    CAS  Google Scholar 

  99. 99

    George, J. & Thomas, K. G. Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. J. Am. Chem. Soc. 132, 2502–2503 (2010).

    CAS  Google Scholar 

  100. 100

    Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    CAS  Google Scholar 

  101. 101

    Molotsky, T., Tamarin, T., Moshe, A. B., Markovich, G. & Kotlyar, A. B. Synthesis of chiral silver clusters on a DNA template. J. Phys. Chem. C 114, 15951–15954 (2010).

    CAS  Google Scholar 

  102. 102

    Merg, A. D. et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138, 13655–13663 (2016).

    CAS  Google Scholar 

  103. 103

    Shen, X. et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134, 146–149 (2012).

    CAS  Google Scholar 

  104. 104

    Lan, X. et al. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137, 457–462 (2015).

    CAS  Google Scholar 

  105. 105

    Shen, X. et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 13, 2128–2133 (2013).

    CAS  Google Scholar 

  106. 106

    Mastroianni, A. J., Claridge, S. & Alivisatos, A. P. Pyramidal and chiral grouping of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2010).

    Google Scholar 

  107. 107

    Wu, X. et al. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 28, 5907–5915 (2016).

    CAS  Google Scholar 

  108. 108

    Wu, X. et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629–18636 (2013).

    CAS  Google Scholar 

  109. 109

    Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).

    CAS  Google Scholar 

  110. 110

    Qi, H., Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J. Am. Chem. Soc. 133, 3728–3731 (2011).

    CAS  Google Scholar 

  111. 111

    Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    CAS  Google Scholar 

  112. 112

    Kim, Y. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15, 461–468 (2016).

    CAS  Google Scholar 

  113. 113

    Di Mauro, A. et al. Vortexes tune the chirality of graphene oxide and its non-covalent hosts. Chem. Commun. 52, 13094–13096 (2016).

    CAS  Google Scholar 

  114. 114

    Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016).

    CAS  Google Scholar 

  115. 115

    Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    CAS  Google Scholar 

  116. 116

    Fenniri, H. et al. Entropically driven self-assembly of multichannel rosette nanotubes. Proc. Natl Acad. Sci. USA 99, 6487–6492 (2002).

    CAS  Google Scholar 

  117. 117

    Motojima, S. & Chen, Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85, 3919–3921 (1999).

    CAS  Google Scholar 

  118. 118

    Sharma, V., Crne, M., Park, J. O. & Srinivasarao, M. Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–452 (2009).

    CAS  Google Scholar 

Download references


S.M.M. is supported by the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) and the Oxford-Radcliffe Scholarship. A.J.B. and S.P.F. thank the EPSRC (EP/M002144/1) for funding.

Author information



Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morrow, S., Bissette, A. & Fletcher, S. Transmission of chirality through space and across length scales. Nature Nanotech 12, 410–419 (2017).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research