Reviving the lithium metal anode for high-energy batteries

Subjects

Abstract

Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li–S and Li–air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Opportunities and challenges for Li metal anodes.
Figure 2: Effects of different electrolyte additives.
Figure 3: Interface engineering on Li metal.
Figure 4: Stable hosts for Li metal and guided Li deposition.
Figure 5: Inorganic and polymer solid electrolytes.
Figure 6: Advanced techniques for Li metal characterizations.
Figure 7: Outlook for Li metal battery engineering and full-cell design.

References

  1. 1

    Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

  2. 2

    Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

  3. 3

    Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

  4. 4

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

  5. 5

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

  6. 6

    Nikolić, Z. & Živanovic, Z. in New Generation of Electric Vehicles (ed. Stevic, Z.) Ch. 2 (INTECH Open Access, 2012); http://dx.doi.org/10.5772/51771

  7. 7

    Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994).

  8. 8

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004).

  9. 9

    Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems — the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). This work introduces the concept of the solid electrolyte interphase, or SEI.

  10. 10

    Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

  11. 11

    Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987).

  12. 12

    Aurbach, D., Ein-Ely, Y. & Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc. 141, L1–L3 (1994).

  13. 13

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

  14. 14

    Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

  15. 15

    Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

  16. 16

    Cohen, Y. S., Cohen, Y. & Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000).

  17. 17

    Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. J. Electrochem. Soc. 142, 2873–2882 (1995).

  18. 18

    Huff, L. A. et al. Identification of Li-Ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl. Mater. Interfaces 8, 371–380 (2015).

  19. 19

    Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).

  20. 20

    Despić, A. R. & Popov, K. I. in Modern Aspects of Electrochemistry No. 7 (eds Conway, B. E. & Bockris, J. O'M.) 199–313 (Springer, 1972).

  21. 21

    Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990).

  22. 22

    Brissot, C., Rosso, M., Chazalviel, J.-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

  23. 23

    Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97, 804–806 (2001).

  24. 24

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). This work reports on the self-healing electrostatic shield mechanism for suppressing Li dendrite deposition.

  25. 25

    Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003).

  26. 26

    Qi, Y., Guo, H., Hector, L. G. & Timmons, A. Threefold increase in the Young's modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157, A558–A566 (2010).

  27. 27

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).

  28. 28

    Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013).

  29. 29

    Besenhard, J. et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon–lithium electrodes. J. Power Sources 44, 413–420 (1993).

  30. 30

    Osaka, T., Momma, T., Matsumoto, Y. & Uchida, Y. Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J. Electrochem. Soc. 144, 1709–1713 (1997).

  31. 31

    Abraham, K. M., Foos, J. S. & Goldman, J. L. Long cycle-life secondary lithium cells utilizing tetrahydrofuran. J. Electrochem. Soc. 131, 2197–2199 (1984).

  32. 32

    Morita, M., Aoki, S. & Matsuda, Y. AC impedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochim. Acta 37, 119–123 (1992).

  33. 33

    Ota, H., Shima, K., Ue, M. & Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572 (2004).

  34. 34

    Mori, M., Naruoka, Y., Naoi, K. & Fauteux, D. Modification of the lithium metal surface by nonionic polyether surfactants: quartz crystal microbalance studies. J. Electrochem. Soc. 145, 2340–2348 (1998).

  35. 35

    Takehara, Z.-i. Future prospects of the lithium metal anode. J. Power Sources 68, 82–86 (1997).

  36. 36

    Shiraishi, S., Kanamura, K. & Takehara, Z.-i. Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution–deposition cycles. J. Electrochem. Soc. 146, 1633–1639 (1999).

  37. 37

    Kanamura, K., Shiraishi, S. & Takehara, Z.-i. Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. J. Fluorine Chem. 87, 235–243 (1998).

  38. 38

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

  39. 39

    Mogi, R. et al. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578–A1583 (2002).

  40. 40

    Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014).

  41. 41

    Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

  42. 42

    Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

  43. 43

    Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). This work describes an electrolyte system with Li salt concentration up to 7 M, which is also known as 'solvent-in-salt'.

  44. 44

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

  45. 45

    Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

  46. 46

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

  47. 47

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

  48. 48

    Marchioni, F. et al. Protection of lithium metal surfaces using chlorosilanes. Langmuir 23, 11597–11602 (2007).

  49. 49

    Thompson, R. S., Schroeder, D. J., López, C. M., Neuhold, S. & Vaughey, J. T. Stabilization of lithium metal anodes using silane-based coatings. Electrochem. Commun. 13, 1369–1372 (2011).

  50. 50

    Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011).

  51. 51

    Wu, M., Wen, Z., Liu, Y., Wang, X. & Huang, L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 196, 8091–8097 (2011).

  52. 52

    Zhang, Y. et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources 277, 304–311 (2015).

  53. 53

    Belov, D., Yarmolenko, O., Peng, A. & Efimov, O. Lithium surface protection by polyacetylene in situ polymerization. Synth. Met. 156, 745–751 (2006).

  54. 54

    Liu, Q. C. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 27, 5241–5247 (2015).

  55. 55

    Basile, A., Bhatt, A. I. & O'Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, 11794 (2016).

  56. 56

    Li, N. W., Yin, Y. X., Yang, C. P. & Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).

  57. 57

    Dudney, N. J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J. Power Sources 89, 176–179 (2000).

  58. 58

    Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

  59. 59

    Cao, Y., Meng, X. & Elam, J. W. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 3, 858–863 (2016).

  60. 60

    Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).

  61. 61

    Park, K. et al. New battery strategies with a polymer/Al2O3 separator. J. Power Sources 263, 52–58 (2014).

  62. 62

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014). This work demonstrates the efficacy of engineering a nanoscale interfacial layer for suppressing dendritic deposition and improving cycling efficiency.

  63. 63

    Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

  64. 64

    Kim, J.-S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015).

  65. 65

    Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). This work reports on a 3D current collector that is capable of homogenizing Li-ion flux and rendering Li deposition more uniform.

  66. 66

    Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016).

  67. 67

    Lu, L.-L. et al. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431–4437 (2016).

  68. 68

    Zhamu, A. et al. Reviving rechargeable lithium metal batteries: enabling next- generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012).

  69. 69

    Ji, X. et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7, 10–20 (2012).

  70. 70

    Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012).

  71. 71

    Shin, W.-K., Kannan, A. G. & Kim, D.-W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 7, 23700–23707 (2015).

  72. 72

    Liang, Z. et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15, 2910–2916 (2015).

  73. 73

    Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).

  74. 74

    Ryou, M. H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).

  75. 75

    Kim, J. S. & Yoon, W. Y. Improvement in lithium cycling efficiency by using lithium powder anode. Electrochim. Acta 50, 531–534 (2004).

  76. 76

    Heine, J. et al. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 4, 1300815 (2014).

  77. 77

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016). This work demonstrates a stable host for Li metal anodes to reduce volume change, stabilize interface, homogenize Li-ion flux and thus improve cycling stability.

  78. 78

    Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

  79. 79

    Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

  80. 80

    Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

  81. 81

    Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

  82. 82

    Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

  83. 83

    Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

  84. 84

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). This work describes an inorganic solid electrolyte, Li 10 GeP 2 S 12 , with ionic conductivity of 12 mS cm−1 at room temperature, comparable to liquid electrolytes.

  85. 85

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

  86. 86

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

  87. 87

    Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

  88. 88

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

  89. 89

    Cho, Y.-H. et al. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3 . J. Mater. Sci. 47, 5970–5977 (2012).

  90. 90

    Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

  91. 91

    Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

  92. 92

    Alpen, U.v., Rabenau, A. & Talat, G. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 30, 621–623 (1977).

  93. 93

    Rabenau, A. Lithium nitride and related materials case study of the use of modern solid state research techniques. Solid State Ionics 6, 277–293 (1982).

  94. 94

    Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G.-y. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

  95. 95

    Bates, J. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53, 647–654 (1992).

  96. 96

    Herbert, E., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520, 413–418 (2011).

  97. 97

    Croce, F., Appetecchi, G., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

  98. 98

    Edman, L., Ferry, A. & Doeff, M. M. Slow recrystallization in the polymer electrolyte system poly (ethylene oxide) n–LiN (CF3SO2)2 . J. Mater. Res. 15, 1950–1954 (2000).

  99. 99

    Nishimoto, A., Watanabe, M., Ikeda, Y. & Kohjiya, S. High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers. Electrochim. Acta 43, 1177–1184 (1998).

  100. 100

    Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).

  101. 101

    Stone, G. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

  102. 102

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

  103. 103

    Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

  104. 104

    Manuel Stephan, A. & Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006).

  105. 105

    Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

  106. 106

    Singh, M. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007).

  107. 107

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

  108. 108

    Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

  109. 109

    Aetukuri, N. B. et al. Flexible ion-conducting composite membranes for lithium batteries. Adv. Energy Mater. 5, 1500265 (2015).

  110. 110

    Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

  111. 111

    Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015).

  112. 112

    Fu, K. K. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl Acad. Sci. USA 113, 7094–7099 (2016).

  113. 113

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

  114. 114

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).

  115. 115

    Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

  116. 116

    Liu, X. H. et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011).

  117. 117

    Sagane, F., Shimokawa, R., Sano, H., Sakaebe, H. & Iriyama, Y. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J. Power Sources 225, 245–250 (2013).

  118. 118

    Nishikawa, K. et al. In situ observation of dendrite growth of electrodeposited Li metal. J. Electrochem. Soc. 157, A1212–A1217 (2010).

  119. 119

    Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

  120. 120

    Unocic, R. R. et al. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal. 20, 1029–1037 (2014).

  121. 121

    Zeng, Z. et al. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014).

  122. 122

    Sacci, R. L. et al. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011–2018 (2015).

  123. 123

    Sacci, R. L. et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014).

  124. 124

    Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. & Harris, C. T. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–4389 (2015).

  125. 125

    Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149–1156 (2014).

  126. 126

    Lim, L. Y., Fan, S., Hng, H. H. & Toney, M. F. Storage capacity and cycling stability in Ge anodes: relationship of anode structure and cycling rate. Adv. Energy Mater. 5, 1500599 (2015).

  127. 127

    Shui, J.-L. et al. Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 2255 (2013).

  128. 128

    Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

  129. 129

    Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

  130. 130

    Wandt, J. et al. Operando electron paramagnetic resonance spectroscopy–formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy Environ. Sci. 8, 1358–1367 (2015).

  131. 131

    Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

  132. 132

    Xiang, B., Wang, L., Liu, G. & Minor, A. M. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J. Electrochem. Soc. 160, A415–A419 (2013).

  133. 133

    Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

  134. 134

    Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).

  135. 135

    White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

  136. 136

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

  137. 137

    Wu, H., Zhuo, D., Kong, D. & Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014).

  138. 138

    Lin, D., Zhuo, D., Liu, Y. & Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016).

  139. 139

    Yim, T. et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett. 15, 5059–5067 (2015).

  140. 140

    Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

Download references

Acknowledgements

Y.C. acknowledges support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy, under the Battery Materials Research (BMR) program and Battery500 Consortium.

Author information

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

Download citation

Further reading