Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical tuning of a quantum plasmonic resonance

Abstract

Surface plasmon (SP) excitations in metals facilitate confinement of light into deep-subwavelength volumes and can induce strong light–matter interaction1,2. Generally, the SP resonances supported by noble metal nanostructures are explained well by classical models, at least until the nanostructure size is decreased to a few nanometres, approaching the Fermi wavelength λF of the electrons3,4,5,6. Although there is a long history of reports on quantum size effects in the plasmonic response of nanometre-sized metal particles7,8,9,10,11,12, systematic experimental studies have been hindered by inhomogeneous broadening in ensemble measurements3, as well as imperfect control over size, shape, faceting, surface reconstructions13, contamination14, charging effects15 and surface roughness16 in single-particle measurements. In particular, observation of the quantum size effect in metallic films and its tuning with thickness has been challenging as they only confine carriers in one direction. Here, we show active tuning of quantum size effects in SP resonances supported by a 20-nm-thick metallic film of indium tin oxide (ITO), a plasmonic material serving as a low-carrier-density Drude metal17,18,19,20,21. An ionic liquid (IL)22,23 is used to electrically gate and partially deplete the ITO layer. The experiment shows a controllable and reversible blue-shift in the SP resonance above a critical voltage. A quantum-mechanical model including the quantum size effect reproduces the experimental results, whereas a classical model only predicts a red shift.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical tuning of the quantum plasmonic resonance of an ITO film.
Figure 2: Electrical manipulation of the carrier-density distribution and SP resonance of a 20-nm-thick ITO film.
Figure 3: The dependence of the observed quantum size effect on the ITO film thickness.

Similar content being viewed by others

References

  1. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article  CAS  Google Scholar 

  2. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  3. Kreibig, U. & Genzel, L. Optical absorption of small metallic particles. Surf. Sci. 156, 678–700 (1985).

    Article  CAS  Google Scholar 

  4. Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    Article  Google Scholar 

  5. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    Article  CAS  Google Scholar 

  6. Toscano, G. et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015).

    Article  Google Scholar 

  7. Wood, D. M. & Ashcroft, N. W. Quantum size effects in the optical properties of small metallic particles. Phys. Rev. B 25, 6255–6274 (1982).

    Article  CAS  Google Scholar 

  8. Halperin, W. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986).

    Article  CAS  Google Scholar 

  9. Keller, O., Xiao, M. & Bozhevolnyi, S. Optical diamagnetic polarizability of a mesoscopic metallic sphere: transverse self-field approach. Opt. Commun. 102, 238–244 (1993).

    Article  CAS  Google Scholar 

  10. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  CAS  Google Scholar 

  11. Raza, S. et al. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2, 131–138 (2013).

    Article  CAS  Google Scholar 

  12. Tiggesbaumker, J., Koller, L. & Liebsch, A. Blueshift of the Mie plasma frequency in Ag clusters and particles. Phys. Rev. A 48, R1749–R1752 (1993).

    Article  Google Scholar 

  13. Kolb, D. M. Reconstruction phenomena at metal-electrolyte interfaces. Prog. Surf. Sci. 51, 109–173 (1996).

    Article  CAS  Google Scholar 

  14. Dondapati, S. K. et al. Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett. 12, 1247–1252 (2012).

    Article  CAS  Google Scholar 

  15. Novo, C., Funston, A. M., Gooding, A. K. & Mulvaney, P. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009).

    Article  CAS  Google Scholar 

  16. Vernon, K. C. et al. Influence of particle-substrate interaction on localized plasmon resonances. Nano Lett. 10, 2080–2086 (2010).

    Article  CAS  Google Scholar 

  17. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  CAS  Google Scholar 

  18. Feigenbaum, E., Diest, K. & Atwater, H. A. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010).

    Article  CAS  Google Scholar 

  19. Franzen, S. et al. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 34, 2867–2869 (2009).

    Article  CAS  Google Scholar 

  20. Liu, X. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett. 105, 181117 (2014).

    Article  Google Scholar 

  21. Losego, M. D. et al. Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance. J. Appl. Phys. 106, 24903 (2009).

    Article  Google Scholar 

  22. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 2005–2008 (2007).

    Google Scholar 

  23. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotech. 6, 408–412 (2011).

    Article  CAS  Google Scholar 

  24. Gleiter, H., Weissmüller, J., Wollersheim, O. & Würschum, R. Nanocrystalline materials: a way to solids with tunable electronic structures and properties? Acta Mater. 49, 737–745 (2001).

    Article  CAS  Google Scholar 

  25. Sagmeister, M., Brossmann, U., Landgraf, S. & Würschum, R. Electrically tunable resistance of a metal. Phys. Rev. Lett. 96, 10–14 (2006).

    Article  Google Scholar 

  26. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  CAS  Google Scholar 

  27. Park, J. et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci. Rep. 5, 15754 (2015).

    Article  CAS  Google Scholar 

  28. Vasudev, A. P., Kang, J.-H., Park, J., Liu, X. & Brongersma, M. L. Electro-optical modulation of a silicon waveguide with an ‘epsilon-near-zero’ material. Opt. Express 21, 26387–26397 (2013).

    Article  Google Scholar 

  29. Kötz, R., Kolb, D. M. & Sass, J . Electron density effects in surface plasmon excitation on silver and gold electrodes. Surf. Sci. 69, 359–364 (1977).

    Article  Google Scholar 

  30. Yuan, H. et al. Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J. Am. Chem. Soc. 132, 6672–6678 (2010).

    Article  CAS  Google Scholar 

  31. Teich, W. G. & Mahler, G. Plasmon excitations in thin metal films. Phys. Status Solidi 138, 607–620 (1986).

    Article  CAS  Google Scholar 

  32. Laref, S. et al. Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. Opt. Express 21, 11827–11838 (2013).

    Article  Google Scholar 

  33. West, P. R. et al. Searching for better plasmonic materials. Laser Photon. Rev. 4, 795–808 (2010).

    Article  CAS  Google Scholar 

  34. De Leon, N. P., Lukin, M. D. & Park, H. Quantum plasmonic circuits. IEEE J. Sel. Top. Quantum Electron. 18, 1781–1791 (2012).

    Article  CAS  Google Scholar 

  35. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Extreme Electron Concentration Devices (EXEDE) MURI program of the Office of Naval Research (ONR) through grant no. N00014-12-1-0976. H.T.Y. and Y.C. acknowledge support by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

X.L., J.-H.K. and M.L.B. conceived the ideas for this research project. X.L. and J.-H.K. developed the condition for the ITO layer deposition and fabricated the sample. X.L. annealed the sample for carrier concentration control of ITO. H.T.Y., Y.C. and H.Y.H. contributed to the IL gating. J.-H.K., X.L. and S.J.K. carried out the optical experiments. X.L. developed the quantum confinement model and performed the calculation. J.-H.K., J.P. and X.L. developed the transfer matrix method calculation. X.L., J.-H.K. and M.L.B. wrote the manuscript. M.L.B. supervised the project. All authors discussed the manuscript and agreed on its final content.

Corresponding authors

Correspondence to Ju-Hyung Kang or Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Kang, JH., Yuan, H. et al. Electrical tuning of a quantum plasmonic resonance. Nature Nanotech 12, 866–870 (2017). https://doi.org/10.1038/nnano.2017.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing