Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures

Abstract

Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing. In addition, none is suitable for thin-film heterostructure fabrication due to the re-mixing of different two-dimensional crystals leading to uncontrolled interfaces and poor device performance. Here, we show a general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication. We show examples of all-inkjet-printed heterostructures, such as large-area arrays of photosensors on plastic and paper and programmable logic memory devices. Finally, in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Range of inkjet-printable inks and their properties.
Figure 2: Fully inkjet-printed heterostructures on Si/SiO2.
Figure 3: Flexible heterostructures fully printed onto plastic and paper.
Figure 4: Logic memory device.
Figure 5: Cytotoxic responses of human lung and keratinocyte cells to two-dimensional ink exposure.

References

  1. Salaneck, W. R., Lundstrom, I., Huang, W. S. & Macdiarmid, A. G. A 2-dimensional surface-state diagram for polyaniline. Synthet. Met. 13, 291–297 (1986).

    CAS  Article  Google Scholar 

  2. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Article  Google Scholar 

  3. Baeg, K.-J., Caironi, M. & Noh, Y.-Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater. 25, 4210–4244 (2013).

    CAS  Article  Google Scholar 

  4. Hutchings, I. M. & Martin, G. D. Inkjet Technology for Digital Fabrication Ch. 4 (Wiley, 2012).

    Book  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  6. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Article  Google Scholar 

  7. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    CAS  Article  Google Scholar 

  8. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  9. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    CAS  Article  Google Scholar 

  10. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  11. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    CAS  Article  Google Scholar 

  12. Withers, F. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987–3992 (2014).

    CAS  Article  Google Scholar 

  13. Kelly, A. G., Finn, D., Harvey, A., Hallam, T. & Coleman, J. N. All-printed capacitors from graphene-BN-graphene nanosheet heterostructures. Appl. Phys. Lett. 109, 023107 (2016).

    Article  Google Scholar 

  14. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 3, 563–568 (2008).

    CAS  Article  Google Scholar 

  15. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  16. Finn, D. J. et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014).

    CAS  Article  Google Scholar 

  17. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    CAS  Article  Google Scholar 

  18. Li, J. et al. Efficient inkjet printing of graphene. Adv. Mater. 25, 3985–3992 (2013).

    CAS  Article  Google Scholar 

  19. Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. & Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013).

    CAS  Article  Google Scholar 

  20. Yao, Y. et al. High-concentration aqueous dispersions of MoS2 . Adv. Funct. Mater. 23, 3577–3583 (2013).

    CAS  Article  Google Scholar 

  21. Li, J., Naiini, M. M., Vaziri, S., Lemme, M. C. & Östling, M. Inkjet printing of MoS2 . Adv. Funct. Mater. 24, 6524–6531 (2014).

    CAS  Article  Google Scholar 

  22. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

  23. Gorter, H. et al. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films 532, 11–15 (2013).

    CAS  Article  Google Scholar 

  24. Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).

    CAS  Article  Google Scholar 

  25. Lotya, M. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009).

    CAS  Article  Google Scholar 

  26. Lotya, M., King, P. J., Khan, U., De, S. & Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010).

    CAS  Article  Google Scholar 

  27. Yang, H. et al. A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 53, 357–365 (2013).

    CAS  Article  Google Scholar 

  28. Yang, H. et al. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Mater. 1, 1–10 (2014).

    Google Scholar 

  29. Schlierf, A. et al. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale 5, 4205–4216 (2013).

    CAS  Article  Google Scholar 

  30. Parviz, D. et al. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 6, 8857–8867 (2012).

    CAS  Article  Google Scholar 

  31. Reis, N. & Derby, B. Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Online Proceeding Library Archive 625, 117–122 (2000).

    CAS  Article  Google Scholar 

  32. Hu, H. & Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006).

    CAS  Article  Google Scholar 

  33. Shin, P., Sung, J. & Lee, M. H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 51, 797–804 (2011).

    CAS  Article  Google Scholar 

  34. Stauffer, D. & Aharony, A. Introduction To Percolation Theory Ch. 5 (Taylor & Francis, 1994).

    Google Scholar 

  35. De, S. & Coleman, J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4, 2713–2720 (2010).

    CAS  Article  Google Scholar 

  36. Secor, E. B. & Hersam, M. C. Emerging carbon and post-carbon nanomaterial inks for printed electronics. J. Phys. Chem. Lett. 6, 620–626 (2015).

    CAS  Article  Google Scholar 

  37. Eastwood, M. A., Brydon, W. G. & Anderson, D. M. The dietary effects of xanthan gum in man. Food Addit. Contam. 4, 17–26 (1987).

    CAS  Article  Google Scholar 

  38. Wheeler, J. S. R. et al. Effect of polymer branching on degradation during inkjet printing. Polym. Degrad. Stab. 128, 1–7 (2016).

    CAS  Article  Google Scholar 

  39. Kostarelos, K. & Novoselov, K. S. Graphene devices for life. Nat. Nanotech. 9, 744–745 (2014).

    CAS  Article  Google Scholar 

  40. Ali-Boucetta, H., Al-Jamal, K. T. & Kostarelos, K. Cytotoxic assessment of carbon nanotube interaction with cell cultures. Methods Mol. Biol. 726, 299–312 (2011).

    CAS  Article  Google Scholar 

  41. Latiff, N. et al. Toxicity of layered semiconductor chalcogenides: beware of interferences. RSC Adv. 5, 67485–67492 (2015).

    CAS  Article  Google Scholar 

  42. Shah, P., Narayanan, T. N., Li, C. Z. & Alwarappan, S. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy. Nanotechnology 26, 1–7 (2015).

    Article  Google Scholar 

  43. Wang, X. et al. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11, 5079–5087 (2015).

    CAS  Article  Google Scholar 

  44. Teo, W. Z., Chng, E. L., Sofer, Z. & Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem. Eur. J. 20, 9627–9632 (2014).

    CAS  Article  Google Scholar 

  45. Chng, E. L., Sofer, Z. & Pumera, M. MoS2 exhibits stronger toxicity with increased exfoliation. Nanoscale 6, 14412–14418 (2014).

    CAS  Article  Google Scholar 

  46. Yong, Y. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 6, 10394–10403 (2014).

    CAS  Article  Google Scholar 

  47. Cheng, L. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886–1893 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Grand Challenge EPSRC grant EP/N010345/1 and the European Science Foundation (ESF) under the EUROCORES Programme EuroGRAPHENE (GOSPEL). F.W. acknowledges support from the Royal Academy of Engineering. D.M.M. acknowledges the EPSRC in the framework of the NoWNano CDT. S.S. acknowledges support by the Army Research Office. S.V. acknowledges the ‘RADDEL’ project (Marie Curie Initial Training Network (ITN) grant no. 290023) under the EU's FP7 PEOPLE programme. K.K., G.I. and G.F. acknowledge financial support from EU FP7-ICT-2013-FET-F Graphene Flagship project (no. 604391) and the Project ‘Graphene Flagship’ Core 1 (contract no. 696656). C.C. and D.M.M. thank K. S. Novoselov, J. Wheeler and A. Valentine Parry for discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived and designed the experiments. D.M.M. developed the inks, with initial assistance from V.S.-R., and conducted all experiments. H.Y. and R.S. performed preliminary experiments. K.P. contributed to the electrical measurements data. S.-K.S. contributed to the transfer of CVD graphene. Device characterization was performed by F.W. and D.M.M. G.F. and G.I. conceived the logic memory device with assistance from C.C. The device was fabricated by D.M.M. and measured by M.M. All biological studies were conceived, designed and performed by S.V. and K.K. The manuscript was written by C.C., D.M.M., G.F., S.V. and K.K., in close consultation with all authors.

Corresponding author

Correspondence to Cinzia Casiraghi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1381 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 162 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 431 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McManus, D., Vranic, S., Withers, F. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nature Nanotech 12, 343–350 (2017). https://doi.org/10.1038/nnano.2016.281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.281

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research