Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple nanostructures based on anodized aluminium oxide templates

Abstract

Several physico-chemical effects and properties in the solid state involve nanoscale interactions between adjacent materials and morphologies. Arrays of binary nanostructures can generate intimate interactions between different sub-components, but fabricating binary nanostructures is challenging. Here, we propose a concept to achieve diverse binary nanostructure arrays with high degrees of controllability for each of the sub-components, including material, dimension and morphology. This binary nanostructuring concept originates with a distinctive binary-pore anodized aluminium oxide template that includes two dissimilar sets of pores in one matrix, where the openings of the two sets of pores are towards opposite sides of the template. Using the same growth mechanism, the binary-pore template can be extended to multi-pore templates with more geometrical options. We also present photoelectrodes, transistors and plasmonic devices made with our binary nanostructure arrays using different combination of materials and morphologies, and demonstrate superior performances compared to their single-component counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binary-pore template.
Figure 2: Representative binary nanostructure arrays.
Figure 3: Formation of binary-pore structure.
Figure 4: Evolution of binary-pore template.
Figure 5: Use of binary nanostructure arrays for photoelectodes and plasmonic substrates.

Similar content being viewed by others

References

  1. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010).

    Article  CAS  Google Scholar 

  2. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  3. Tomioka, K., Yoshimura, M. & Fukui, T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488, 189–192 (2012).

    Article  CAS  Google Scholar 

  4. Li, K. H., Liu, X., Wang, Q., Zhao, S. & Mi, Z. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotech. 10, 140–144 (2015).

    Article  CAS  Google Scholar 

  5. Wu, W. Z., Wen, X. N. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).

    Article  CAS  Google Scholar 

  6. Pan, C. F. et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 7, 752–758 (2013).

    Article  CAS  Google Scholar 

  7. Fan, Z. Y. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009).

    Article  CAS  Google Scholar 

  8. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotech. 8, 247–251 (2013).

    Article  CAS  Google Scholar 

  9. Wallentin, J. et al. Inp nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    Article  CAS  Google Scholar 

  10. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).

    Article  CAS  Google Scholar 

  11. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S. B. & Rubloff, G. W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nanotech. 4, 292–296 (2009).

    Article  CAS  Google Scholar 

  12. Liu, C. Y. et al. An all-in-one nanopore battery array. Nat. Nanotech. 9, 1031–1039 (2014).

    Article  CAS  Google Scholar 

  13. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  14. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  15. Ye, X. et al. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nat. Commun. 6, 10052 (2015).

    Article  Google Scholar 

  16. Paik, T., Diroll, B. T., Kagan, C. R. & Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 137, 6662–6669 (2015).

    Article  CAS  Google Scholar 

  17. Shegai, T. et al. A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 481 (2011).

    Article  Google Scholar 

  18. Li, Z. G. et al. Design and fabrication of ZnO/Ni heterogeneous binary arrays with selective control of structure, size and distance via stepwise colloidal lithography. RSC Adv. 3, 14829–14836 (2013).

    Article  CAS  Google Scholar 

  19. Shin, D. O. et al. Multicomponent nanopatterns by directed block copolymer self-assembly. ACS Nano 7, 8899–8907 (2013).

    Article  CAS  Google Scholar 

  20. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  21. Jain, T., Aernecke, M., Liberman, V. & Karnik, R. High resolution fabrication of nanostructures using controlled proximity nanostencil lithography. Appl. Phys. Lett. 104, 083117 (2014).

    Article  Google Scholar 

  22. Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    Article  CAS  Google Scholar 

  23. Fan, Z. Y. et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 10, 3823–3827 (2010).

    Article  CAS  Google Scholar 

  24. Ozel, T., Bourret, G. R. & Mirkin, C. A. Coaxial lithography. Nat. Nanotech. 10, 319–324 (2015).

    Article  CAS  Google Scholar 

  25. Mi, Y. et al. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Adv. Energy Mater. 6, 1501496 (2016).

    Article  Google Scholar 

  26. Lee, W., Ji, R., Gösele, U. & Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006).

    Article  CAS  Google Scholar 

  27. Lee, W. et al. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotech. 3, 234–239 (2008).

    Article  CAS  Google Scholar 

  28. Lee, M. H. et al. Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 3425–3430 (2011).

    Article  CAS  Google Scholar 

  29. Leung, S.-F. et al. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Sci. Rep. 4, 4243 (2014).

    Article  Google Scholar 

  30. Masuda, H. et al. Ordered mosaic nanocomposites in anodic porous alumina. Adv. Mater. 15, 161–164 (2003).

    Article  CAS  Google Scholar 

  31. Yanagishita, T., Sasaki, M., Nishio, K. & Masuda, H. Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template. Adv. Mater. 16, 429–432 (2004).

    Article  CAS  Google Scholar 

  32. Smith, J. T., Hang, Q., Franklin, A. D., Janes, D. B. & Sands, T. D. Highly ordered diamond and hybrid triangle–diamond patterns in porous anodic alumina thin films. Appl. Phys. Lett. 93, 043108 (2008).

    Article  Google Scholar 

  33. Wen, L. Y. et al. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. Small 10, 3162–3168 (2014).

    Article  CAS  Google Scholar 

  34. Wang, Z. et al. Manipulation of charge transfer and transport in plasmonic–ferroelectric hybrids for photoelectrochemical applications. Nat. Commun. 7, 10348 (2016).

    Article  CAS  Google Scholar 

  35. Lee, W. & Park, S.-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014).

    Article  CAS  Google Scholar 

  36. Lei, Y., Cai, W. P. & Wilde, G. Highly ordered nanostructures with tunable size, shape and properties: a new way to surface nano-patterning using ultra-thin alumina masks. Prog. Mater Sci. 52, 465–539 (2007).

    Article  CAS  Google Scholar 

  37. Wen, L. Y. et al. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11, 3408–3428 (2015).

    Article  CAS  Google Scholar 

  38. Masuda, H. et al. Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13, 189–192 (2001).

    Article  CAS  Google Scholar 

  39. Yang, J. et al. Morphology defects guided pore initiation during the formation of porous anodic alumina. ACS Appl. Mater. Interfaces 6, 2285–2291 (2014).

    Article  CAS  Google Scholar 

  40. Garcia-Vergara, S. J., Skeldon, P., Thompson, G. E. & Habazaki, H. A flow model of porous anodic film growth on aluminium. Electrochim. Acta 52, 681–687 (2006).

    Article  CAS  Google Scholar 

  41. Hebert, K. R., Albu, S. P., Paramasivam, I. & Schmuki, P. Morphological instability leading to formation of porous anodic oxide films. Nat. Mater 11, 162–166 (2012).

    Article  CAS  Google Scholar 

  42. Oh, J. & Thompson, C. V. The role of electric field in pore formation during aluminum anodization. Electrochim. Acta 56, 4044–4051 (2011).

    Article  CAS  Google Scholar 

  43. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  44. Liu, C., Tang, J. Y., Chen, H. M., Liu, B. & Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    Article  CAS  Google Scholar 

  45. Giannini, V., Fernandez-Dominguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888–3912 (2011).

    Article  CAS  Google Scholar 

  46. Long, J. W., Dunn, B., Rolison, D. R. & White, H. S. Three-dimensional battery architectures. Chem. Rev. 104, 4463–4492 (2004).

    Article  CAS  Google Scholar 

  47. Parkhutik, V. P. & Shershulsky, V. I. Theoretical modeling of porous oxide-growth on aluminum. J. Phys. D 25, 1258–1263 (1992).

    Article  CAS  Google Scholar 

  48. Li, D. D., Zhao, L. A., Jiang, C. H. & Lu, J. G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett. 10, 2766–2771 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a European Research Council Grant (ThreeDSurface 240144), a European Research Council PoC Grant (HiNaPc, 737616), the Federal Ministry of Education and Research in Germany (BMBF: ZIK-3DNano-Device, 03Z1MN11) and the German Research Foundation (DFG, LE 2249_4–1). The authors thank R. Henry for help with FIB milling and TEM imaging, and S. H. Si and M. Breiter for help with the RIE process. The authors thank T. Hannappel for use of multi-tip scanning tunnelling microscopy equipment. The authors also thank Z. J. Wang, H. P. Zhao, D. W. Cao and M. Sommerfeld for technical support and discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.W. and Y.L. conceived the concept. Y.L. supervised the project. L.W., R.X. and Y.M. prepared the materials, conducted the experiments and collected the data. L.W. analysed the date. L.W and Y.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yong Lei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Xu, R., Mi, Y. et al. Multiple nanostructures based on anodized aluminium oxide templates. Nature Nanotech 12, 244–250 (2017). https://doi.org/10.1038/nnano.2016.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing