Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields

Abstract

The miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scales. It also unravels the vectorial character of the force field and how its topology impacts the measurement. Here we present an ultrasensitive method for imaging two-dimensional vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This approach relies on angular and spectral tomography of its quasi-frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field not only shifts its eigenfrequencies but also rotates the orientation of the eigenmodes, as a nanocompass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even dominate the intrinsic nanowire properties. Enabling vectorial force field imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have a strong impact on scientific exploration at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D optomechanical readout.
Figure 2: Measurement principle of 2D force field gradients.
Figure 3: Mapping electrostatic force field gradients.
Figure 4: Scanning probe measurements of electrostatic force field gradients.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. Cleland, A. Foundations of Nanomechanics (Springer, 2003).

    Book  Google Scholar 

  3. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  4. Schwab, K. & Roukes, M. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  5. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotech. 8, 493–496 (2013).

    Article  CAS  Google Scholar 

  6. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T. & Rugar, D. Nanoscale magnetic resonance imaging. Proc. Natl Acad. Sci. USA 106, 1313–1317 (2009).

    Article  CAS  Google Scholar 

  7. Nichol, J., Hemesath, E., Lauhon, L. & Budakian, R. Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator. Phys. Rev. B 85, 054414 (2012).

    Article  Google Scholar 

  8. Peddibhotla, P. et al. Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nat. Phys. 9, 631–635 (2013).

    Article  CAS  Google Scholar 

  9. Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  10. Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotech. 3, 533–537 (2008).

    Article  CAS  Google Scholar 

  11. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotech. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  12. Sage, E. et al. Neutral particle mass spectrometry with nanomechanical systems. Nat. Commun. 6, 6482 (2015).

    Article  CAS  Google Scholar 

  13. Hanay, M. S. et al. Inertial imaging with nanomechanical systems. Nat. Nanotech. 10, 339–344 (2015).

    Article  CAS  Google Scholar 

  14. Ganzhorn, M., Klyatskaya, S., Ruben, M. & Wernsdorfer, W. Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotech. 8, 165–169 (2013).

    Article  CAS  Google Scholar 

  15. Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7, 879–883 (2011).

    Article  CAS  Google Scholar 

  16. Ovartchaiyapong, P., Lee, K. W., Myers, B. A. & Bleszynski Jayich, A. C. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014).

    Article  CAS  Google Scholar 

  17. Yeo, I. et al. Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system. Nat. Nanotech. 9, 106–110 (2014).

    Article  CAS  Google Scholar 

  18. Montinaro, M. et al. Quantum dot opto-mechanics in a fully self-assembled nanowire. Nano Lett. 14, 4454–4460 (2014).

    Article  CAS  Google Scholar 

  19. Pigeau, B. et al. Observation of a phononic mollow triplet in a multimode hybrid spin-nanomechanical system. Nat. Commun. 6, 8603 (2015).

    Article  CAS  Google Scholar 

  20. Gloppe, A. et al. Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nat. Nanotech. 9, 920–926 (2014).

    Article  CAS  Google Scholar 

  21. Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotech. 7, 217–226 (2012).

    Article  CAS  Google Scholar 

  22. Siria, A. et al. Electron fluctuation induced resonance broadening in nano electromechanical systems: the origin of shear force in vacuum. Nano Lett. 12, 3551–3556 (2012).

    Article  CAS  Google Scholar 

  23. Nichol, J. M., Hemesath, E. R., Lauhon, L. J. & Budakian, R. Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry. Appl. Phys. Lett. 93, 193110–193110 (2008).

    Article  Google Scholar 

  24. Gil-Santos, E. et al. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645 (2010).

    Article  CAS  Google Scholar 

  25. Ramos, D. et al. Optomechanics with silicon nanowires by harnessing confined electromagnetic modes. Nano Lett. 12, 932–937 (2012).

    Article  CAS  Google Scholar 

  26. Cadeddu, D. et al. Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine gaas nanowire. Nano Lett. 16, 926–931 (2016).

    Article  CAS  Google Scholar 

  27. Pinard, M., Hadjar, Y. & Heidmann, A. Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107–116 (1999).

    CAS  Google Scholar 

  28. Schwarz, C. et al. Deviation from the normal mode expansion in a coupled graphene-nanoresonator system. Preprint at http://arxiv.org/abs/1601.00154 (2016).

  29. Barois, T. et al. Ohmic electromechanical dissipation in nanomechanical cantilevers. Phys. Rev. B 85, 075407 (2012).

    Article  Google Scholar 

  30. Nigues, A., Siria, A. & Verlot, P. Dynamical backaction cooling with free electrons. Nat. Commun. 6, 8104 (2015).

    Article  CAS  Google Scholar 

  31. Gloppe, A. et al. Generalized Dynamical Backaction in 2D Nano-Optomechanics PhD thesis, Univ. Grenoble (2014); https://tel.archives-ouvertes.fr/tel-01174074/

  32. Rodrigues, M. S., Costa, L., Chevrier, J. & Comin, F. Why do atomic force microscopy force curves still exhibit jump to contact? Appl. Phys. Lett. 101, 203105 (2012).

    Article  Google Scholar 

  33. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988).

    Article  Google Scholar 

  34. Terris, B. D., Stern, J. E., Rugar, D. & Mamin, H. J. Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669–2672 (1989).

    Article  CAS  Google Scholar 

  35. Behunin, R. O., Intravaia, F., Dalvit, D. A. R., Neto, P. A. M. & Reynaud, S. Modeling electrostatic patch effects in Casimir force measurements. Phys. Rev. A 85, 012504 (2012).

    Article  Google Scholar 

  36. Derjaguin, B. & Abrikossova, I. Direct measurements of molecular attraction of solids. J. Phys. Chem. Solids 5, 1–10 (1958).

    Article  Google Scholar 

  37. Faust, T., Rieger, J., Seitner, M. J., Kotthaus, J. P. & Weig, E. M. Coherent control of a classical nanomechanical two-level system. Nat. Phys. 9, 485–488 (2013).

    Article  CAS  Google Scholar 

  38. Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987).

    Article  CAS  Google Scholar 

  39. Karrai, K. & Tiemann, I. Interfacial shear force microscopy. Phys. Rev. B 62, 13174–13181 (2000).

    Article  CAS  Google Scholar 

  40. Kuehn, S., Loring, R. F. & Marohn, J. A. Dielectric fluctuations and the origins of noncontact friction. Phys. Rev. Lett. 96, 156103 (2006).

    Article  Google Scholar 

  41. Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photon. 5, 211–221 (2011).

    Article  CAS  Google Scholar 

  42. Chen, F., Mohideen, U., Klimchitskaya, G. L. & Mostepanenko, V. M. Demonstration of the lateral Casimir force. Phys. Rev. Lett. 88, 101801 (2002).

    Article  CAS  Google Scholar 

  43. Bushev, P. et al. Shot-noise-limited monitoring and phase locking of the motion of a single trapped ion. Phys. Rev. Lett. 110, 133602 (2013).

    Article  CAS  Google Scholar 

  44. Li, T., Kheifets, S. & Raizen, M. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011).

    Article  CAS  Google Scholar 

  45. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PNEC group at ILM, A. Gloppe, B. Canals, J. Chevrier, S. Reynaud, A. Lambrecht, R. Guérout, J.P. Poizat, G. Bachelier, J. Jarreau, C. Hoarau, E. Eyraud and D. Lepoittevin for theoretical, experimental and technical assistance. This project is supported by the ANR (FOCUS-13-BS10-0012), the ERC Starting Grant StG-2012-HQ-NOM and Lanef (CryOptics).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Olivier Arcizet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lépinay, L., Pigeau, B., Besga, B. et al. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. Nature Nanotech 12, 156–162 (2017). https://doi.org/10.1038/nnano.2016.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing