Magnetic domain walls as reconfigurable spin-wave nanochannels

Article metrics


In the research field of magnonics1,2,3,4,5,6,7, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this Letter, we address these challenges with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, we make use of two inherent characteristics of magnetism: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. We present the experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and realize a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Channelling principle, sample geometry and magnetization configuration.
Figure 2: Excitation spectra and spin-wave mode profiles.
Figure 3: Magnetization, effective magnetic field, spin-wave modes and dispersion.
Figure 4: Spin-wave localization.
Figure 5: Steering spin waves with small fields.


  1. 1

    Kruglyak, V. V. & Hicken, R. J. Magnonics: experiment to prove the concept. J. Magn. Magn. Mater. 306, 191–194 (2006).

  2. 2

    Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

  3. 3

    Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  4. 4

    Kruglyak, V. V., Demokritov, S. O. & Hillebrands, B. Magnonics. J. Phys. D 43, 264001 (2010).

  5. 5

    Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

  6. 6

    Grundler, D. Reconfigurable magnonics heats up. Nature Phys. 11, 438–441 (2015).

  7. 7

    Chumak, A. V., Vasyuchka, V. I. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

  8. 8

    Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

  9. 9

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

  10. 10

    Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

  11. 11

    Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

  12. 12

    Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).

  13. 13

    Bayer, C., Schultheiss, H., Hillebrands, B. & Stamps, R. Phase shift of spin waves traveling through a 180° Bloch-domain wall. IEEE Trans. Magn. 41, 3094–3096 (2005).

  14. 14

    Kim, S.-K. et al. Negative refraction of dipole-exchange spin waves through a magnetic twin interface in restricted geometry. Appl. Phys. Lett. 92, 212501 (2008).

  15. 15

    Macke, S. & Goll, D. Transmission and reflection of spin waves in the presence of Néel walls. J. Phys. Conf. Ser. 200, 042015 (2010).

  16. 16

    Pirro, P. et al. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure. Appl. Phys. Lett. 106, 232405 (2015).

  17. 17

    Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

  18. 18

    Garcia-Sanchez, F. et al. Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015).

  19. 19

    Jorzick, J. et al. Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett. 88, 047204 (2002).

  20. 20

    Sebastian, T. et al. Nonlinear emission of spin-wave caustics from an edge mode of a microstructured Co2Mn0.6Fe0.4Si waveguide. Phys. Rev. Lett. 110, 067201 (2013).

  21. 21

    Rave, W. & Hubert, A. Magnetic ground state of a thin-film element. IEEE Trans. Magn. 36, 3886–3899 (2000).

  22. 22

    Sebastian, T., Schultheiss, K., Obry, B., Hillebrands, B. & Schultheiss, H. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front. Phys. 3, 35 (2015).

  23. 23

    Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Self-focusing of spin waves in permalloy microstripes. Appl. Phys. Lett. 91, 252504 (2004).

  24. 24

    Schultheiss, H. et al. Observation of coherence and partial decoherence of quantized spin waves in nanoscaled magnetic ring structures. Phys. Rev. Lett. 100, 047204 (2008).

  25. 25

    Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

  26. 26

    Lee, K. S. & Kim, S. K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

  27. 27

    Schneider, T., Serga, A. A., Hillebrands, B. & Kostylev, M. Spin-wave ferromagnetic film combiner as a NOT logic gate. J. Nanoelectron. Optoelectron. 3, 69–71 (2008).

  28. 28

    Fassbender, J., Ravelosona, D. & Samson, Y. Tailoring magnetism by light-ion irradiation. J. Phys. D 37, R179 (2004).

  29. 29

    Fassbender, J. & McCord, J. Magnetic patterning by means of ion irradiation and implantation. J. Magn. Magn. Mater. 320, 579–596 (2008).

Download references


The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft within programme SCHU 2922/1-1. K.S. acknowledges funding from the Helmholtz Postdoc Programme. A.K. thanks C.M. Schneider for providing the computational resources.

Author information

K.W., T.S., A.H. and H.S. designed the experiment. K.W. and T.S. prepared the samples. K.W. performed the BLS microscopy measurements and analysed the experimental data. K.W. and A.K. performed and evaluated the micromagnetic simulations. All authors interpreted and discussed the results and co-wrote the manuscript.

Correspondence to H. Schultheiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 210 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 379 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 244 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, K., Kákay, A., Schultheiss, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nature Nanotech 11, 432–436 (2016) doi:10.1038/nnano.2015.339

Download citation

Further reading