Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic domain walls as reconfigurable spin-wave nanochannels

Abstract

In the research field of magnonics1,2,3,4,5,6,7, it is envisaged that spin waves will be used as information carriers, promoting operation based on their wave properties. However, the field still faces major challenges. To become fully competitive, novel schemes for energy-efficient control of spin-wave propagation in two dimensions have to be realized on much smaller length scales than used before. In this Letter, we address these challenges with the experimental realization of a novel approach to guide spin waves in reconfigurable, nano-sized magnonic waveguides. For this purpose, we make use of two inherent characteristics of magnetism: the non-volatility of magnetic remanence states and the nanometre dimensions of domain walls formed within these magnetic configurations. We present the experimental observation and micromagnetic simulations of spin-wave propagation inside nano-sized domain walls and realize a first step towards a reconfigurable domain-wall-based magnonic nanocircuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Channelling principle, sample geometry and magnetization configuration.
Figure 2: Excitation spectra and spin-wave mode profiles.
Figure 3: Magnetization, effective magnetic field, spin-wave modes and dispersion.
Figure 4: Spin-wave localization.
Figure 5: Steering spin waves with small fields.

Similar content being viewed by others

References

  1. Kruglyak, V. V. & Hicken, R. J. Magnonics: experiment to prove the concept. J. Magn. Magn. Mater. 306, 191–194 (2006).

    Article  CAS  Google Scholar 

  2. Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

    Article  CAS  Google Scholar 

  3. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    Article  Google Scholar 

  4. Kruglyak, V. V., Demokritov, S. O. & Hillebrands, B. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  5. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  6. Grundler, D. Reconfigurable magnonics heats up. Nature Phys. 11, 438–441 (2015).

    Article  CAS  Google Scholar 

  7. Chumak, A. V., Vasyuchka, V. I. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  8. Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

    Article  Google Scholar 

  9. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  10. Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

    Article  CAS  Google Scholar 

  11. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  12. Hertel, R., Wulfhekel, W. & Kirschner, J. Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004).

    Article  Google Scholar 

  13. Bayer, C., Schultheiss, H., Hillebrands, B. & Stamps, R. Phase shift of spin waves traveling through a 180° Bloch-domain wall. IEEE Trans. Magn. 41, 3094–3096 (2005).

    Article  Google Scholar 

  14. Kim, S.-K. et al. Negative refraction of dipole-exchange spin waves through a magnetic twin interface in restricted geometry. Appl. Phys. Lett. 92, 212501 (2008).

    Article  Google Scholar 

  15. Macke, S. & Goll, D. Transmission and reflection of spin waves in the presence of Néel walls. J. Phys. Conf. Ser. 200, 042015 (2010).

    Article  Google Scholar 

  16. Pirro, P. et al. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure. Appl. Phys. Lett. 106, 232405 (2015).

    Article  Google Scholar 

  17. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

    Article  CAS  Google Scholar 

  18. Garcia-Sanchez, F. et al. Narrow magnonic waveguides based on domain walls. Phys. Rev. Lett. 114, 247206 (2015).

    Article  Google Scholar 

  19. Jorzick, J. et al. Spin wave wells in nonellipsoidal micrometer size magnetic elements. Phys. Rev. Lett. 88, 047204 (2002).

    Article  CAS  Google Scholar 

  20. Sebastian, T. et al. Nonlinear emission of spin-wave caustics from an edge mode of a microstructured Co2Mn0.6Fe0.4Si waveguide. Phys. Rev. Lett. 110, 067201 (2013).

    Article  CAS  Google Scholar 

  21. Rave, W. & Hubert, A. Magnetic ground state of a thin-film element. IEEE Trans. Magn. 36, 3886–3899 (2000).

    Article  Google Scholar 

  22. Sebastian, T., Schultheiss, K., Obry, B., Hillebrands, B. & Schultheiss, H. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front. Phys. 3, 35 (2015).

    Article  Google Scholar 

  23. Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Self-focusing of spin waves in permalloy microstripes. Appl. Phys. Lett. 91, 252504 (2004).

    Article  Google Scholar 

  24. Schultheiss, H. et al. Observation of coherence and partial decoherence of quantized spin waves in nanoscaled magnetic ring structures. Phys. Rev. Lett. 100, 047204 (2008).

    Article  CAS  Google Scholar 

  25. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  26. Lee, K. S. & Kim, S. K. Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions. J. Appl. Phys. 104, 053909 (2008).

    Article  Google Scholar 

  27. Schneider, T., Serga, A. A., Hillebrands, B. & Kostylev, M. Spin-wave ferromagnetic film combiner as a NOT logic gate. J. Nanoelectron. Optoelectron. 3, 69–71 (2008).

    Article  Google Scholar 

  28. Fassbender, J., Ravelosona, D. & Samson, Y. Tailoring magnetism by light-ion irradiation. J. Phys. D 37, R179 (2004).

    Article  CAS  Google Scholar 

  29. Fassbender, J. & McCord, J. Magnetic patterning by means of ion irradiation and implantation. J. Magn. Magn. Mater. 320, 579–596 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft within programme SCHU 2922/1-1. K.S. acknowledges funding from the Helmholtz Postdoc Programme. A.K. thanks C.M. Schneider for providing the computational resources.

Author information

Authors and Affiliations

Authors

Contributions

K.W., T.S., A.H. and H.S. designed the experiment. K.W. and T.S. prepared the samples. K.W. performed the BLS microscopy measurements and analysed the experimental data. K.W. and A.K. performed and evaluated the micromagnetic simulations. All authors interpreted and discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to H. Schultheiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 210 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 379 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, K., Kákay, A., Schultheiss, K. et al. Magnetic domain walls as reconfigurable spin-wave nanochannels. Nature Nanotech 11, 432–436 (2016). https://doi.org/10.1038/nnano.2015.339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing