Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

Abstract

Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p–i–n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Morphology of solution-processed metal oxides.
Figure 2: Electronic states of the NiOx and ZnO nanoparticle films.
Figure 3: Charge transport properties of the metal oxide and perovskite, with corresponding device structure.
Figure 4: Morphology of perovskite film and device.
Figure 5: Device performance of metal-oxide-based perovskite solar cells (glass/ITO/NiOx/CH3NH3PbI3/ZnO/Al).
Figure 6: Stability of the devices in an ambient environment without encapsulation.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  2. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  3. Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Article  Google Scholar 

  4. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Article  Google Scholar 

  5. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Article  Google Scholar 

  6. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Mater. 13, 897–903 (2014).

    CAS  Article  Google Scholar 

  7. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    CAS  Article  Google Scholar 

  8. Im, J. H., Jang, I. H., Pellet, N., Grätzel, M. & Park, N. G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotech. 9, 927–932 (2014).

    CAS  Article  Google Scholar 

  9. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    CAS  Article  Google Scholar 

  10. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8, 12701–12709 (2014).

    CAS  Article  Google Scholar 

  11. Xiao, M. et al. A fast deposition–crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    CAS  Article  Google Scholar 

  12. You, J. et al. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014).

    Article  Google Scholar 

  13. Xiao, Z. G. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014).

    CAS  Article  Google Scholar 

  14. Conings, B. et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2014).

    CAS  Article  Google Scholar 

  15. Jeng, J. Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    CAS  Article  Google Scholar 

  16. Liang, P. W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).

    CAS  Article  Google Scholar 

  17. Noh, J. H. et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    CAS  Google Scholar 

  18. Qin, P. et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Commun. 5, 3834 (2014).

    CAS  Article  Google Scholar 

  19. Christians, J. A. et al. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014).

    CAS  Article  Google Scholar 

  20. Jeng, J. Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014).

    CAS  Article  Google Scholar 

  21. Zhu, Z. L. et al. High-performance hole-extraction layer of sol–gel-processed NiOx nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014).

    CAS  Google Scholar 

  22. Liu, D. Y. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).

    CAS  Article  Google Scholar 

  23. Hau, S. K. et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).

    Article  Google Scholar 

  24. Qian, L. et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photon. 5, 543–548 (2011).

    CAS  Article  Google Scholar 

  25. Manders, J. R. et al. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23, 2993–3001 (2013).

    CAS  Article  Google Scholar 

  26. Rim, Y. S. et al. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Nano 8, 9680–9686 (2014).

    CAS  Article  Google Scholar 

  27. Wang, K. C. et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiOx/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851–11858 (2014).

    CAS  Article  Google Scholar 

  28. Sun, Y. M. et al. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

    CAS  Article  Google Scholar 

  29. Docampo, P. et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2013).

    Article  Google Scholar 

  30. You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–1680 (2014).

    CAS  Article  Google Scholar 

  31. Stoumpos, C. C. et al. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Article  Google Scholar 

  32. Park, J. H. et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015).

    CAS  Article  Google Scholar 

  33. You, J. et al. Electroluminescence behavior of ZnO/Si heterojunctions: energy band alignment and interfacial microstructure. J. Appl. Phys. 107, 083701 (2010).

    Article  Google Scholar 

  34. Gilot, J. et al. The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007).

    Article  Google Scholar 

  35. Shao, Y. C., Xiao, Z. G., Bi, C., Yuan, Y. B. & Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Commun. 5, 5784 (2014).

    CAS  Article  Google Scholar 

  36. Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    CAS  Article  Google Scholar 

  37. Stranks, S. D. & Sanith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotech. 10, 391–402 (2015).

    CAS  Article  Google Scholar 

  38. Bastiani, M. D., Binda, M., Gandini, M., Ball, J. & Petrozza, A. Charge extraction layer investigation for high efficiency and hysteresis-less organo lead halide perovskite solar cell. Proc. MRS Spring Meeting C4.04 (2015).

    Google Scholar 

  39. Zhang, Y. et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cell. Mater. Horiz. 2, 315–322 (2015).

    CAS  Article  Google Scholar 

  40. Xu, J. X. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Commun. 6, 7081 (2015).

    CAS  Article  Google Scholar 

  41. Ryu, S. et al. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 3, 3271–3275 (2015).

    CAS  Article  Google Scholar 

  42. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

    CAS  Article  Google Scholar 

  43. Bao, Q. et al. Oxygen- and water-based degradation in [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) films. Adv. Energy Mater. 4, 1301272 (2014).

    Article  Google Scholar 

  44. Peumans, P. et al. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3722 (2003).

    CAS  Article  Google Scholar 

  45. Durr, A. C. et al. Morphology and thermal stability of metal contacts on crystalline organic films. Adv. Mater. 14, 961–963 (2002).

    CAS  Article  Google Scholar 

  46. Seo, J. et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014).

    CAS  Article  Google Scholar 

  47. Lee, K. H. et al. Air-stable polymer electronic devices. Adv. Mater. 19, 2445–2449 (2007).

    CAS  Article  Google Scholar 

  48. De Jong, M. P. et al. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255–2257 (2000).

    CAS  Article  Google Scholar 

  49. You, J. et al. Metal oxide nanoparticles as electron transport layer in high performance and stable inverted polymer solar cells. Adv. Mater. 24, 5267–5272 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by a grant from the National Science Foundation (ECCS-1202231) and the Air Force Office of Scientific Research (FA9550-12-1-0074). T.F.G. acknowledges financial support from the Ministry of Science and Technology (MOST), Taiwan ROC (MOST 103-2119-M-006-020 and MOST 102-2628-M-006-001-MY3). The authors thank E. Zhu and Y. Li for TEM measurement, S. Adam for help with SKPM measurements and Y.S. Rim for discussions regarding NiOx synthesis. The authors also thank G. Li for discussions and E. Young for proof reading.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and Y.Y. designed the experiments. J.Y. and L.M. performed device fabrication and data analysis. T.Z.S., H.C., Y.(M.)Y., W.H.C., H.Z., Q.C., Y.S.L. and N.D.M. contributed materials/analysis tools. T.F.G. commented on the project. J.Y., L.M. and Y.Y. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5013 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, J., Meng, L., Song, TB. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotech 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.230

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research