Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response

Abstract

Asymmetric dye molecules have unusual optical and electronic properties1,2,3. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers2,3. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p′-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response4) inside single-walled carbon nanotubes (SWCNTs)5,6, an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (β0 = 9,800 × 10−30 e.s.u.), resulting from the coherent alignment of arrays of 70 DANS molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stacking of dipolar molecules in different dimensions.
Figure 2: Absorption and PLE spectroscopy.
Figure 3: Raman and PLE shifts showing the critical diameter for DANS encapsulation.
Figure 4: Wavelength-dependent NLO polarizability.

Similar content being viewed by others

References

  1. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  2. Dalton, L. R., Sullivan, P. A. & Bale, D. H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 110, 25–55 (2009).

    Article  Google Scholar 

  3. Cho, M. J. et al. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci. 33, 1013–1058 (2008).

    Article  CAS  Google Scholar 

  4. Oudar, J. L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J. Chem. Phys. 67, 446–457 (1977).

    Article  CAS  Google Scholar 

  5. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  6. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. in Topics in Applied Physics Vol. 80 (2001).

    Google Scholar 

  7. Takenobu, T. et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Mater. 2, 683–688 (2003).

    Article  CAS  Google Scholar 

  8. Yanagi, K., Miyata, Y. & Kataura, H. Highly stabilized β-carotene in carbon nanotubes. Adv. Mater. 18, 437–441 (2006).

    Article  CAS  Google Scholar 

  9. Gaufrès, E. et al. Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nature Photon. 8, 72–78 (2014).

    Article  Google Scholar 

  10. Marder, S. R., Perry, J. W. & Schaefer, W. P. Synthesis of organic salts with large second-order optical nonlinearities. Science 245, 626–628 (1989).

    Article  CAS  Google Scholar 

  11. Yi, T. et al. J-aggregated dye–MnPS3 hybrid nanoparticles with giant quadratic optical nonlinearity. Adv. Mater. 17, 335–338 (2005).

    Article  CAS  Google Scholar 

  12. Singer, K. D., Sohn, J. E. & Lalama, S. J. Second harmonic generation in poled polymer films. Appl. Phys. Lett. 49, 248–250 (1986).

    Article  CAS  Google Scholar 

  13. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  14. Shin, D. M. & Whitten, D. G. Solvatochromic behavior of intramolecular charge-transfer diphenylpolyenes in homogeneous solution and microheterogeneous media. J. Phys. Chem. 92, 2945–2956 (1988).

    Article  CAS  Google Scholar 

  15. Wenseleers, W. et al. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: Characterizing tube opening by Raman spectroscopy. Adv. Mater. 19, 2274–2278 (2007).

    Article  CAS  Google Scholar 

  16. Cambré, S. & Wenseleers, W. Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation. Angew. Chem. Int. Ed. 50, 2764–2768 (2011).

    Article  Google Scholar 

  17. Cambré, S. et al. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett. 104, 207401 (2010).

    Article  Google Scholar 

  18. Cambré, S. et al. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano 6, 2649–2655 (2012).

    Article  Google Scholar 

  19. Terhune, R. W., Maker, P. D. & Savage, C. M. Measurements of nonlinear light scattering. Phys. Rev. Lett. 14, 681–684 (1965).

    Article  Google Scholar 

  20. Campo, J., Desmet, F., Wenseleers, W. & Goovaerts, E. Highly sensitive setup for tunable wavelength hyper-Rayleigh scattering with parallel detection and calibration data for various solvents. Opt. Express 17, 4587–4604 (2009).

    Article  CAS  Google Scholar 

  21. Guo, G. Y., Chu, K. C., Wang, D-S. & Duan, C-G. Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations. Phys. Rev. B 69, 205416 (2004).

    Article  Google Scholar 

  22. Campo, J. et al. Practical model for first hyperpolarizability dispersion accounting for both homogeneous and inhomogeneous broadening effects. J. Phys. Chem. Lett. 3, 2248–2252 (2012).

    Article  CAS  Google Scholar 

  23. Ising, E. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31, 253–258 (1925).

    Article  CAS  Google Scholar 

  24. Köfinger, J. & Dellago, C. Single-file water as a one-dimensional Ising model. New J. Phys. 12, 093044 (2010).

    Article  Google Scholar 

  25. Cox, S. D., Gier, T. E., Stucky, G. D. & Bierlein, J. Inclusion tuning of nonlinear optical materials: switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts. J. Am. Chem. Soc. 110, 2986–2987 (1988).

    Article  CAS  Google Scholar 

  26. Pham, T. C. T., Kim, H. S. & Yoon, K. B. Large increase in the second-order nonlinear optical activity of a hemicyanine-incorporating zeolite film. Angew. Chem. Int. Ed. 52, 5539–5543 (2013).

    Article  CAS  Google Scholar 

  27. Bronikowski, M. J. et al. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J. Vac. Sci. Technol. A 19, 1800–1805 (2001).

    Article  CAS  Google Scholar 

  28. Wenseleers, W. et al. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Funct. Mater. 14, 1105–1112 (2004).

    Article  CAS  Google Scholar 

  29. Arnold, M. S. et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  30. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Van Werveke for preliminary work indicating a similar alignment with a different NLO chromophore (Disperse Red 1). Financial support from the Fund for Scientific Research – Flanders (FWO) for the SWCNT work (projects G040011N, G021112N and 1513513N) and for the NLO measurements (projects G.0129.07, G.0206.12, 1523913N and G.0522.13N) is acknowledged. Part of this work was supported by a UA-NOI-BOF grant, the Hercules Foundation, and EU ITN Nano2Fun. S.C. and J.C. are postdoctoral fellows of the FWO.

Author information

Authors and Affiliations

Authors

Contributions

S.C. performed most of the synthesis and designed and performed most Raman and PLE experiments. J.C. designed and performed the HRS experiments and some synthesis. C.B. conducted part of the initial synthesis and spectroscopic characterization of DANS@oARC samples. C.V. independently reproduced the synthesis for the HiPco samples and part of the spectroscopic characterization. P.C. performed the thermogravimetric analysis. W.W. conceived the idea and co-designed and supervised all experiments. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Wim Wenseleers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambré, S., Campo, J., Beirnaert, C. et al. Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nature Nanotech 10, 248–252 (2015). https://doi.org/10.1038/nnano.2015.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing