Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state


Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Relaxation from a non-equilibrium steady state generated by parametric feedback cooling.
Figure 3: Fluctuation theorem for the relaxation experiment in Fig. 2.
Figure 4: Relaxation from a non-equilibrium steady state generated by external parametric modulation.
Figure 5: Fluctuation theorem for the relaxation experiment of Fig. 4.


  1. 1

    Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Crooks, G. E. The entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Bochkov, G. N. & Kuzovlev, Y. E. Nonlinear fluctuation–dissipation relations and stochastic models in nonequilibrium thermodynamics. Physica A 106, 443–479 (1981).

    Article  Google Scholar 

  5. 5

    Machlup, S. & Onsager, L. Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953).

    Article  Google Scholar 

  6. 6

    Jarzynski, C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  Google Scholar 

  8. 8

    Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43–48 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Alemany, A., Mossa, A., Junier, I. & Ritort, F. Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nature Phys. 8, 688–694 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Douarche, F., Joubaud, S., Garnier, N. B., Petrosyan, A. & Ciliberto, S. Work fluctuation theorems for harmonic oscillators. Phys. Rev. Lett. 97, 140603 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Garnier, N. & Ciliberto, S. Nonequilibrium fluctuations in a resistor. Phys. Rev. E 71, 060101 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Küng, B. et al. Irreversibility on the level of single-electron tunneling. Phys. Rev. X 2, 011001 (2012).

    Google Scholar 

  14. 14

    Saira, O. P. et al. Test of the Jarzynski and Crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 109, 180601 (2012).

    Article  Google Scholar 

  15. 15

    Schuler, S., Speck, T., Tietz, C., Wrachtrup, J. & Seifert, U. Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Hummer, G. & Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 98, 3658–3661 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. Science 296, 1832–1835 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Ciliberto, S., Joubaud, S. & Petrosyan, A. Fluctuations in out-of-equilibrium systems: from theory to experiment. J. Stat. Mech. 2010, P12003 (2010).

    Article  Google Scholar 

  19. 19

    Campisi, M., Hänggi, P. & Talkner, P. Colloquium:quantum fluctuation relations: foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011).

    Article  Google Scholar 

  20. 20

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    CAS  Article  Google Scholar 

  22. 22

    O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Crooks, G. E. On thermodynamic and microscopic reversibility. J. Stat. Mech. 2011, P07008 (2011).

    Google Scholar 

  24. 24

    Evans, D. J. & Searles, D. J. Fluctuations relations for nonequilibrium systems. Adv. Phys. 51, 1529–1585 (2002).

    Article  Google Scholar 

  25. 25

    Crisanti, A. & Ritort, F. Intermittency of glassy relaxation and the emergence of a non-equilibrium spontaneous measure in the aging regime. Europhys. Lett. 66, 253–259 (2007).

    Article  Google Scholar 

  26. 26

    Gomez-Solano, J. R., Petrosyan, A. & Ciliberto, S. Fluctuations, linear response and heat flux of an aging system. Europhys. Lett. 98, 10007 (2012).

    Article  Google Scholar 

  27. 27

    Gomez-Solano, J. R., Petrosyan, A. & Ciliberto, S. Heat fluctuations in a nonequilibrium bath. Phys. Rev. Lett. 106, 200602 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Ciliberto, S., Gomez-Solano, R. & Petrosyan, A. Fluctuations, linear response, and currents in out-of-equilibrium systems. Ann. Rev. Condens. Matter Phys. 4, 235–261 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Huber, G., Schmidt-Kaler, F., Deffner, S. & Lutz, E. Employing trapped cold ions to verify the quantum Jarzynski equality. Phys. Rev. Lett. 101, 070403 (2008).

    Article  Google Scholar 

  30. 30

    Evans, D. J. & Searles, D. J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

    Article  Google Scholar 

  32. 32

    Gaveau, B. & Schulman, L. S. A general framework for non-equilibrium phenomena: the master equation and its formal consequences. Phys. Lett. A 229, 347–353 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Carberry, D. M. et al. Fluctuations and irreversibility: an experimental demonstration of a Second-Law-like theorem using a colloidal particle held in an optical trap. Phys. Rev. Lett. 92, 140601 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Crooks, G. E. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Kawai, R., Parrondo, J. & Van den Broeck, C. Dissipation: the phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).

    CAS  Article  Google Scholar 

  36. 36

    Jarzynski, C. Microscopic analysis of Clausius–Duhem processes. J. Stat. Phys. 96, 415–427 (1999).

    Article  Google Scholar 

  37. 37

    Ciliberto, S., Imparato, A., Naert, A. & Tanase, M. Heat flux and entropy produced by thermal fluctuations. Phys. Rev. Lett. 110, 180601 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Koski, J. V. et al. Distribution of entropy production in a single-electron box. Nature Phys. 9, 644–648 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Jarzynski, C. Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett. 92, 230602 (2004).

    Article  Google Scholar 

  40. 40

    Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  Google Scholar 

  41. 41

    Nunnenkamp, A., Børkje, K., Harris, J. & Girvin, S. M. Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A 82, 021806 (2010).

    Article  Google Scholar 

  42. 42

    Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nature Phys. 9, 806–810 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Dykman, M. I. & Krivoglaz, M. A. Theory of fluctuational transitions between the stable states of a non-linear oscillator. Sov. Phys. JETP 77, 60–73 (1979).

    Google Scholar 

  44. 44

    Dykman, M. I. in Fluctuating Nonlinear Oscillators. From Nanomechanics to Quantum Superconducting Circuits (ed. Dykman, M. I.) 165–197 (Oxford Univ. Press, 2012).

    Google Scholar 

  45. 45

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012).

    CAS  Article  Google Scholar 

Download references


This research was supported by ETH Zürich, ERC-QMES (no. 338763), ERC-Plasmolight (no. 259196), Fundació Privada CELLEX and the Austrian Science Fund (FWF) within the SFB ViCoM (grant F41). The authors acknowledge support from the ESF Network Exploring the Physics of Small Devices.

Author information




L.N. and J.G. conceived and designed the experiments. J.G. performed the experiments. J.G., C.D. and L.N. analysed the data. C.D. developed the theoretical framework. R.Q. contributed materials/analysis tools. J.G., C.D. and L.N. co-wrote the paper.

Corresponding authors

Correspondence to Christoph Dellago or Lukas Novotny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1002 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gieseler, J., Quidant, R., Dellago, C. et al. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech 9, 358–364 (2014). https://doi.org/10.1038/nnano.2014.40

Download citation

Further reading


Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research