Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Random nanolasing in the Anderson localized regime

Abstract

The development of nanoscale optical devices for classical and quantum photonics1,2,3,4,5 is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities6, for example in random lasers, where lasing relies on random multiple scattering7,8,9,10,11,12,13. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition11 with chaotic fluctuations14 due to a weak mode confinement. The regime of Anderson localization of light15 has been proposed for obtaining stable multimode random lasing16, and initial work concerned macroscopic one-dimensional layered media17. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes, thus preventing mode competition and improving stability. This enables highly efficient, stable and broadband wavelength-controlled lasers with very small mode volumes. Furthermore, the complex interplay between gain, dispersion-controlled slow light, and disorder is demonstrated experimentally for a non-conservative random medium. The statistical analysis shows a way towards optimizing random-lasing performance by reducing the localization length, a universal parameter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-mode and multimode random lasing in the Anderson localization regime.
Figure 2: Controlling the Anderson localized random lasing wavelength.
Figure 3: Statistical properties of random lasing in the Anderson localization regime.
Figure 4: Intensity fluctuations in the Anderson localized regime.

Similar content being viewed by others

References

  1. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  CAS  Google Scholar 

  2. O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  CAS  Google Scholar 

  3. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  CAS  Google Scholar 

  4. Strauf, S. & Jahnke, F. Single quantum dot nanolaser. Laser Photon. Rev. 5, 607–633 (2011).

    Google Scholar 

  5. Noda, S. Seeking the ultimate nanolaser. Science 314, 260–261 (2006).

    Article  CAS  Google Scholar 

  6. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson localized modes. Science 327, 1352–1355 (2010).

    Article  CAS  Google Scholar 

  7. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  CAS  Google Scholar 

  8. van de Molen, K. L., Tjerkstra, R. W., Mosk, A. P. & Lagendijk, A. Spatial extent of random laser modes. Phys. Rev. Lett. 98, 143901 (2007).

    Article  Google Scholar 

  9. Tureci, H. E., Ge, L., Rotter, S. & Stone, A. D. Strong interactions in multimode random lasers. Science 320, 643–646 (2008).

    Article  Google Scholar 

  10. Gottardo, S. et al. Resonance-driven random lasing. Nature Photon. 2, 429–432 (2008).

    Article  CAS  Google Scholar 

  11. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  CAS  Google Scholar 

  12. Fallert, J. et al. Co-existence of strongly and weakly localized random laser modes. Nature Photon. 3, 279–282 (2009).

    Article  CAS  Google Scholar 

  13. Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nature Photon. 5, 615–617 (2011).

    Article  CAS  Google Scholar 

  14. Mujumdar, S., Türck, V., Torre, R. & Wiersma, D. S. Chaotic behavior of a random laser with static disorder. Phys. Rev. A 76, 033807 (2007).

    Article  Google Scholar 

  15. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  CAS  Google Scholar 

  16. Stano, R. & Jacquod, P. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photon. 7, 66–71 (2013).

    Article  CAS  Google Scholar 

  17. Milner, V. & Genack, A. Z. Photon localisation laser: low-threshold lasing in a random amplifying layered medium via wave localisation. Phys. Rev. Lett. 94, 073901 (2005).

    Article  Google Scholar 

  18. Yang, J. et al. Lasing in localized modes of a slow light photonic crystal waveguide. Appl. Phys. Lett. 98, 241107 (2012).

    Article  Google Scholar 

  19. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).

    Google Scholar 

  20. Frank, R., Lubatsch, A. & Kroha, J. Theory of strong localisation effects of light in disordered loss or gain media. Phys. Rev. B 73, 245107 (2006).

    Article  Google Scholar 

  21. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localisation in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  CAS  Google Scholar 

  22. Gregersen, N., Suhr, T., Lorke, M. & Mørk, J. Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission. Appl. Phys. Lett. 100, 131107 (2012).

    Article  Google Scholar 

  23. Altug, O. & Vučković, J. Photonic crystal nanocavity array laser. Opt. Express 13, 8819–8828 (2005).

    Article  Google Scholar 

  24. Smolka, S. et al. Probing the statistical properties of Anderson localisation with quantum emitters. New J. Phys. 13, 063044 (2011).

    Article  Google Scholar 

  25. Thyrrestrup, H., Smolka, S., Sapienza, L. & Lodahl, P. Statistical theory of a quantum emitter strongly coupled to Anderson localized modes. Phys. Rev. Lett. 108, 113901 (2012).

    Article  Google Scholar 

  26. Ramy, G. S., Dardiry, E. & Lagendijk, A. Tuning random lasers by engineered absorption. Appl. Phys. Lett. 98, 161106 (2011).

    Article  Google Scholar 

  27. Garcia, P. D., Smolka, S., Stobbe, S. & Lodahl, P. Density of states controls Anderson localisation in disordered photonic crystal waveguides. Phys. Rev. B 82, 165103 (2010).

    Article  Google Scholar 

  28. Apalkov, V. M. & Raikh, M. E. Universal fluctuations of the random lasing threshold in a sample of a finite area. Phys. Rev. B 71, 054203 (2005).

    Article  Google Scholar 

  29. Tulek, A., Polson, R. C. & Vardeny, Z. V. Naturally occurring resonators in random lasing of π-conjugated polymer films. Nature Phys. 6, 303–310 (2010).

    Article  CAS  Google Scholar 

  30. Loncar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    Article  CAS  Google Scholar 

  31. Garcia, P. D., Stobbe, S., Soellner, I. & Lodahl, P. Nonuniversal intensity correlations in a two-dimensional Anderson localizing random medium. Phys. Rev. Lett. 109, 253902 (2012).

    Article  Google Scholar 

  32. Grgic, J. et al. Fundamental limitations to gain enhancement in periodic media and waveguides. Phys. Rev. Lett. 108, 183903 (2012).

    Article  Google Scholar 

  33. Yamilov, A. & Payne, B. Classification of regimes of wave transport in quasi-one-dimensional non-conservative random media. J. Mod. Opt. 57, 1916–1921 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank E. Semenova for epitaxial growth. The authors acknowledge financial support from the Danish Council for Independent Research (Natural Sciences and Technology and Production Sciences), the European Research Council (ERC consolidator grant) and the Villum Foundation (NATEC centre of excellence).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and M.S. carried out the optical experiments. S.E. and M.S. fabricated the sample. J.L. and P.D.G. analysed the experimental data. N.G., T.S. and J.M. developed the rate equation models. J.L., P.D.G, S.S. and P.L. wrote the manuscript. J.M., S.S. and P.L. supervised the project. All authors read and commented on the manuscript.

Corresponding author

Correspondence to P. Lodahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Garcia, P., Ek, S. et al. Random nanolasing in the Anderson localized regime. Nature Nanotech 9, 285–289 (2014). https://doi.org/10.1038/nnano.2014.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing