Abstract
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity1 as a basis for quantum information processing2,3. Proposals in this direction based on the proximity effect in semiconductor nanowires are appealing because the key ingredients are currently in hand4,5. However, previous instances of proximitized semiconductors show significant tunnelling conductance below the superconducting gap, suggesting a continuum of subgap states—a situation that nullifies topological protection6,7. Here, we report a hard superconducting gap induced by the proximity effect in a semiconductor, using epitaxial InAs–Al semiconductor–superconductor nanowires. The hard gap, together with favourable material properties and gate-tunability, makes this new hybrid system attractive for a number of applications, as well as fundamental studies of mesoscopic superconductivity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Parallel InAs nanowires for Cooper pair splitters with Coulomb repulsion
npj Quantum Materials Open Access 09 September 2022
-
Experimental review on Majorana zero-modes in hybrid nanowires
Science China Physics, Mechanics & Astronomy Open Access 02 September 2021
-
Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
Nature Communications Open Access 13 August 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.





References
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys. 7, 412–417 (2011).
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
Cheng, M., Lutchyn, R. M. & Das Sarma, S. Topological protection of Majorana qubits. Phys. Rev. B 85, 165124 (2012).
Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).
Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Phys. 8, 887–895 (2012).
Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).
Churchill, H. O. H. et al. Superconductor–nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).
Takei, S., Fregoso, B. M., Hui, H-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).
Krogstrup, P. et al. Junctions in axial III–V heterostructure nanowires obtained via an interchange of group III elements. Nano Lett. 9, 3689–3693 (2009).
Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nature Mater.http://dx.doi.org/10.1038/nmat4176 (2015).
Chang, W., Manucharyan, V. E., Jespersen, T. S., Nygård, J. & Marcus, C. M. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 110, 217005 (2013).
Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Anomalous modulation of a zero-bias peak in a hybrid nanowire–superconductor device. Phys. Rev. Lett. 110, 126406 (2013).
Beenakker, C. W. J. Quantum transport in semiconductor–superconductor microjunctions. Phys. Rev. B 46, 12841–12844 (1992).
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
Chuang, S. et al. Ballistic InAs nanowire transistors. Nano Lett. 13, 555–558 (2013).
Ford, A. C., Kumar, S. B., Kapadia, R., Guo, J. & Javey, A. Observation of degenerate one-dimensional sub-bands in cylindrical InAs nanowires. Nano Lett. 12, 1340–1343 (2012).
Yu, L. Bound state in superconductors with paramagnetic impurities. Acta Phys. Sin. 21, 75–91 (1965).
Shiba, H. Classical spins in superconductors. Prog. Theor. Phys. 40, 435–451 (1968).
Rusinov, A. I. Theory of gapless superconductivity in alloys containing paramagnetic impurities. Sov. Phys. JETP 29, 1101–1106 (1969).
Koerting, V., Andersen, B. M., Flensberg, K. & Paaske, J. Nonequilibrium transport via spin-induced subgap states in superconductor/quantum dot/normal metal cotunnel junctions. Phys Rev. B 82, 2451081–2451084 (2010).
Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).
Lee, E. J. H. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nature Nanotech. 9, 79–84 (2014).
Dirks, T. et al. Transport through Andreev bound states in a graphene quantum dot. Nature Phys. 7, 386–390 (2011).
Pillet, J-D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Phys. 6, 965–969 (2010).
Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).
Deacon, R. S. et al. Kondo-enhanced andreev transport in single self-assembled InAs quantum dots contacted with normal and superconducting leads. Phys. Rev. B 81, 121308 (2010).
Vecino, E., Martín-Rodero, A. & Yeyati, A. L. Josephson current through a correlated quantum level: Andreev states and π junction behavior. Phys. Rev. B 68, 035105 (2003).
Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 2004).
Wunnicke, O. Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 89, 083102 (2006).
Doh, Y-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).
Jespersen, T. S., Polianski, M. L., Sørensen, C. B., Flensberg, K. & Nygård, J. Mesoscopic conductance fluctuations in InAs nanowire-based SNS junctions. New J. Phys. 11, 113025 (2009).
Acknowledgements
The authors thank E. Johnson for assistance with electron microscopy and K. Flensberg for discussions. This research was supported by Microsoft Project Q, the Danish National Research Foundation, the Carlsberg Foundation, the Villum Foundation, the Lundbeck Foundation and the European Commission.
Author information
Authors and Affiliations
Contributions
P.K., T.S.J. and J.N. developed the nanowire materials. W.C. and S.A. fabricated the devices and carried out the measurements with input from F.K., T.S.J. and C.M. All authors contributed to analysing and interpreting the data and to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary Information (PDF 3331 kb)
Rights and permissions
About this article
Cite this article
Chang, W., Albrecht, S., Jespersen, T. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nature Nanotech 10, 232–236 (2015). https://doi.org/10.1038/nnano.2014.306
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2014.306
This article is cited by
-
Parallel InAs nanowires for Cooper pair splitters with Coulomb repulsion
npj Quantum Materials (2022)
-
Epitaxial Pb on InAs nanowires for quantum devices
Nature Nanotechnology (2021)
-
Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
Nature Communications (2021)
-
Engineered platforms for topological superconductivity and Majorana zero modes
Nature Reviews Materials (2021)
-
Experimental review on Majorana zero-modes in hybrid nanowires
Science China Physics, Mechanics & Astronomy (2021)